
Introduction to Algorithms April 16, 2008
Massachusetts Institute of Technology 6.006 Spring 2008
Professors Srini Devadas and Erik Demaine Quiz 2

Quiz 2
• Do not open this quiz booklet until you are directed to do so. Read all the instructions on

this page.
• When the quiz begins, write your name on every page of this quiz booklet.
• This quiz contains 5 problems, some with multiple parts. You have 120 minutes to earn 120

points.
• This quiz booklet contains 10 pages, including this one. Two extra sheets of scratch paper

are attached. Please detach them before turning in your quiz at the end of the exam period.
• This quiz is closed book. You may use one 81

2

′′ × 11′′ or A4 crib sheet (both sides). No
calculators or programmable devices are permitted.
• Write your solutions in the space provided. If you need more space, write on the back of the

sheet containing the problem. Do not put part of the answer to one problem on the back of
the sheet for another problem, since the pages may be separated for grading.
• Do not waste time and paper rederiving facts that we have studied. It is sufficient to cite

known results.
• Do not spend too much time on any one problem. Read them all through first, and attack

them in the order that allows you to make the most progress.
• Show your work, as partial credit will be given. You will be graded not only on the correct-

ness of your answer, but also on the clarity with which you express it. Be neat.
• Good luck!

Problem Parts Points Grade Grader

1 7 35

2 2 20

3 2 20

4 1 20

5 1 25

Total 120

Name:

Circle your recitation time:
Hueihan Jhuang: (10AM) (11AM) Victor Costan (2PM) (3PM)

6.006 Quiz 2 Name 2

Problem 1. True or False [35 points] (7 parts)

Decide whether these statements are True or False. You must briefly justify all your answers to
receive full credit.

(a) To sort n integers in the range from 1 to n2, a good implementation of radix sort is
asymptotically faster in the worst case than any comparison sort.

True False
Explain:

(b) Call an ordered pair (x1, y1) of numbers lexically less than an ordered pair (x2, y2)
if either (i) x1 < x2 or (ii) x1 = x2 and y1 < y2. Then a set of ordered pairs can
be sorted lexically by two passes of a sorting algorithm that only compares individual
numbers.

True False
Explain:

6.006 Quiz 2 Name 3

(c) Any in-place sorting algorithm can be used as the auxiliary sort in radix sort.
True False

Explain:

(d) Every directed acyclic graph has only one topological ordering of its vertices.
True False

Explain:

(e) If the priority queue in Dijkstra’s algorithm is implemented using a sorted linked list
(where the list is kept sorted after each priority queue operation), then Dijkstra’s algo-
rithm would run in O(E lg V + V lg V) time.

True False
Explain:

6.006 Quiz 2 Name 4

(f) In searching for a shortest path from vertex s to vertex t in a graph, two-way breadth-
first search never visits more nodes than a normal one-way breadth-first search.

True False
Explain:

(g) Every sorting algorithm requires Ω(n lg n) comparisons in the worst case to sort n
elements.

True False
Explain:

6.006 Quiz 2 Name 5

Problem 2. Linear Dijkstra? [20 points] (2 parts)

(a) Professor Devamaine has just invented an exciting optimization for Dijkstra’s algo-
rithm that runs in O(V + E) time for undirected graphs with edge weights of just 0
and 1.
Show the professor that the same time bound can be achieved simply by modifying
the graph and then running breadth-first search as a black box.

6.006 Quiz 2 Name 6

(b) After hearing of his colleague’s embarrassment, Professor Demaidas invents another
modification to Dijkstra’s algorithm that runs in O(V +E) time for undirected graphs
with edge weights of just 1 and 2.
Show the professor that the same time bound can again be achieved by modifying the
graph and then running breadth-first search as a black box.

6.006 Quiz 2 Name 7

Problem 3. Bottleneck Path [20 points] (2 parts)

(a) In the bottleneck-path problem, you are given a graph G with edge weights, two
vertices s and t, and a particular weight W ; your goal is to find a path from s to t in
which every edge has at least weight W . Describe an efficient algorithm to solve this
problem. Your algorithm should work even if the edge weights are negative and/or the
particular weight W is negative.

6.006 Quiz 2 Name 8

(b) In the maximum-bottleneck-path problem, you are given a graphGwith edge weights,
and two vertices s and t; your goal is to find a path from s to t whose minimum edge
weight is maximized. Describe an efficient algorithm to solve this problem that uses
an efficient algorithm from Part (a) as a subroutine. You may assume an efficient
algorithm for Part (a) exists, and use it as a black box.

6.006 Quiz 2 Name 9

Problem 4. Reality [20 points]

You’ve just agreed to star in the new hit reality show, Whose Geek Is It Anyway? At the outset,
you’re given a map of an island of puzzles, which is a directed graph marked with a start vertex s
and a goal vertex t. Traversing each edge e requires solving a puzzle, which you believe you can
solve with probability p(e). Describe how to modify the graph so that Dijkstra’s algorithm will
find a path from s to t that has the maximum probability of winning. (Assume your abilities to
solve different puzzles are independent events.)

A sample input:

s t

85%

90%

60%

99%

95%
80%

50% 30%

45%

40%
65%

25%

(home) (fame, fortune)

6.006 Quiz 2 Name 10

Problem 5. Negative-Weight Cycles [25 points]

If a directed graph G = (V,E) contains a negative-weight cycle, shortest paths to some vertices
will not exist, but there may still be shortest paths to other vertices. Assume that every vertex v
is reachable from the source vertex s in G. Give an efficient algorithm that labels each vertex v
with the shortest-path distance from s to v, or with −∞ if no shortest path exists. (In other words,
compute δ(s, v) for all v.) You can invoke all algorithms covered in lectures or recitations.

For reference, below is the pseudocode for Bellman Ford adapted from CLRS, which returns False
if there are reachable negative weight cycles and True otherwise:

def bellman_ford(V, E, w, s):
1 initialize_single_source(V, E, s)
2 for i in range(|V|-1):
3 for (u, v) in E:
4 relax(u, v, w)
5 for (u, v) in E:
6 if d[v] > d[u] + w(u, v):
7 return False
8 return True

SCRATCH PAPER

SCRATCH PAPER

