
Introduction to Algorithms May 21, 2008
Massachusetts Institute of Technology 6.006 Spring 2008
Professors Srini Devadas and Erik Demaine Final Exam

Final Exam
• Do not open this exam booklet until you are directed to do so. Read all the instructions on

this page.
• When the exam begins, write your name on every page of this exam booklet.
• This exam contains 12 problems, some with multiple parts. You have 180 minutes to earn

180 points.
• This exam booklet contains 24 pages, including this one. Two extra sheets of scratch paper

are attached. Please detach them before turning in your exam at the end of the exam period.
• This exam is closed book. You may use three 81

2

′′ × 11′′ or A4 crib sheets (both sides). No
calculators or programmable devices are permitted.
• Write your solutions in the space provided. If you need more space, write on the back of the

sheet containing the problem. Do not put part of the answer to one problem on the back of
the sheet for another problem, since the pages may be separated for grading.
• Do not waste time and paper rederiving facts that we have studied. It is sufficient to cite

known results.
• Do not spend too much time on any one problem. Read them all through first, and attack

them in the order that allows you to make the most progress.
• Show your work, as partial credit will be given. You will be graded not only on the correct-

ness of your answer, but also on the clarity with which you express it. Be neat.
• Good luck!

Problem Parts Points Grade Grader Problem Parts Points Grade Grader

1 1 10 7 2 10

2 10 40 8 2 10

3 1 10 9 1 10

4 2 10 10 3 15

5 1 10 11 4 20

6 2 15 12 4 20

Total 180

Name:

Circle your recitation time:
Hueihan Jhuang: (10AM) (11AM) Victor Costan (2PM) (3PM)

6.006 Final Exam Name 2

Problem 1. Asymptotics [10 points]

For each pair of functions f(n) and g(n) in the table below, write O, Ω, or Θ in the appropriate
space, depending on whether f(n) = O(g(n)), f(n) = Ω(g(n)), or f(n) = Θ(g(n)). If there
is more than one relation between f(n) and g(n), write only the strongest one. The first line is a
demo solution.

We use lg to denote the base-2 logarithm.

n n lg n n2

n lg2 n Ω Ω O

2lg2 n

lg(n!)

nlg 3

6.006 Final Exam Name 3

Problem 2. True or False [40 points] (10 parts)

Decide whether these statements are True or False. You must briefly justify all your answers to
receive full credit.

(a) An algorithm whose running time satisfies the recurrence P (n) = 1024 P (n/2) + O(n100)
is asymptotically faster than an algorithm whose running time satisfies the recurrence
E(n) = 2 E(n− 1024) + O(1).

True False
Explain:

(b) An algorithm whose running time satisfies the recurrence A(n) = 4 A(n/2) + O(1)
is asymptotically faster than an algorithm whose running time satisfies the recurrence
B(n) = 2 B(n/4) + O(1).

True False
Explain:

6.006 Final Exam Name 4

(c) Radix sort works in linear time only if the elements to sort are integers in the range
{0, 1, . . . , c n} for some c = O(1).

True False
Explain:

(d) Given an undirected graph, it can be tested to determine whether or not it is a tree in
O(V + E) time. A tree is a connected graph without any cycles.

True False
Explain:

6.006 Final Exam Name 5

(e) The Bellman-Ford algorithm applies to instances of the single-source shortest path
problem which do not have a negative-weight directed cycle, but it does not detect the
existence of a negative-weight directed cycle if there is one.

True False
Explain:

(f) The topological sort of an arbitrary directed acyclic graph G = (V, E) can be com-
puted in linear time.

True False
Explain:

6.006 Final Exam Name 6

(g) We know of an algorithm to detect negative-weight cycles in an arbitrary directed
graph in O(V + E) time.

True False
Explain:

(h) We know of an algorithm for the single source shortest path problem on an arbitrary
graph with no negative-weights that works in O(V + E) time.

True False
Explain:

6.006 Final Exam Name 7

(i) To delete the ith node in a min heap, you can exchange the last node with the ith node,
then do the min-heapify on the ith node, and then shrink the heap size to be one less
the original size.

True False
Explain:

(j) Generalizing Karatsuba’s divide and conquer algorithm, by breaking each multipli-
cand into 3 parts and doing 5 multiplications improves the asymptotic running time.

True False
Explain:

6.006 Final Exam Name 8

Problem 3. Set Union [10 points]

Give an efficient algorithm to compute the union A∪B of two sets A and B of total size |A|+|B| =
n. Assume that sets are represented by arrays (Python lists) that store distinct elements in an
arbitrary order. In computing the union, the algorithm must remove any duplicate elements that
appear in both A and B.

For full credit, your algorithm should run in O(n) time. For partial credit, give an O(n lg n)-time
algorithm.

6.006 Final Exam Name 9

Problem 4. Balanced Trees [10 points]

In the definition of an AVL tree we required that the height of each left subtree be within one of
the height of the corresponding right subtree. This guaranteed that the worst-case search time was
O(log n), where n is the number of nodes in the tree. Which of the following requirements would
also provide the same guarantee?

(a) The number of nodes in each left subtree is within a factor of 2 of the number of nodes
in the corresponding right subtree. Also, a node is allowed to have only one child if
that child has no children.
This tree has worst case height O(lg n).

True False
Explain:

6.006 Final Exam Name 10

(b) The number of leaves (nodes with no children) in each left subtree is within one of the
number of leaves in the corresponding right subtree.
This tree has worst case height O(lg n).

True False
Explain:

6.006 Final Exam Name 11

Problem 5. Height Balanced Trees [10 points]

We define the height of a node in a binary tree as the number of nodes in the longest path from the
node to a descendant leaf. Thus the height of a node with no children is 1, and the height of any
other node is 1 plus the larger of the heights of its left and right children.

We define height balanced trees as follows;

• each node has a “height” field containing its height,

• at any node, the height of its right child differs by at most one from the height of its left child.

Finally we define Fib(i) as follows,

Fib(0) = 1

Fib(1) = 1

Fib(i) = Fib(i− 1) + Fib(i− 2), for i ≥ 2.

You may use without proof that Fib(n) ≥ 1.6n for large n.

Prove that there are at least Fib(h) nodes in a height balanced tree of height h, for all h ≥ 1.

6.006 Final Exam Name 12

Problem 6. Maintaining Medians [15 points]

Your latest and foolproof (really this time) gambling strategy is to bet on the median option among
your choices. That is, if you have n distinct choices whose sorted order is c[1] < c[2] < · · · < c[n],
then you bet on choice c[b(n + 1)/2c]. As the day goes by, new choices appear and old choices
disappear; each time, you sort your current choices and bet on the median. Quickly you grow tired
of sorting. You decide to build a data structure that keeps track of the median as your choices come
and go. Specifically, your data structure stores the number n of choices, the current median m, and
two AVL trees S and T , where S stores all choices less than m and T stores all choices greater
than m.

(a) Explain how to add a new choice cnew to the data structure, and restore the invariants
that (1) m is the median of all current choices; (2) S stores all choices less than m; and
(3) T stores all choices greater than m. Analyze the running time of your algorithm.

6.006 Final Exam Name 13

(b) Explain how to remove an existing choice cold from the data structure, and restore
invariants (1–3) above. Analyze the running time of your algorithm.

6.006 Final Exam Name 14

Problem 7. Hashing [10 points]

Suppose that we have a hash table with 2n slots, with collisions resolved by chaining, and suppose
that n keys are inserted into the table. Assume simple uniform hashing, i.e., each key is equally
likely to be hashed into each slot.

(a) What is the expected number of elements that hash into slot i?

(b) What is the probability that exactly k keys hash into slot i?

6.006 Final Exam Name 15

Problem 8. d-max-heap [10 points]

A d-max-heap is like an ordinary binary max-heap, except that nodes have d children instead of 2.

(a) Describe how a d-max-heap can be represented in an array A[1 . . . n]. In particular,
for the internal (non-leaf) node of the d-max-heap stored in any location A[i], which
positions in A hold its child nodes?

(b) Define the height of the heap to be the number of nodes on the longest path from the
root to a leaf.
In terms of n and d, what is the height of a d-max-heap of n elements?

6.006 Final Exam Name 16

Problem 9. Firehose Optimization [10 points]

You have decided to apply your algorithmic know-how to the practical problem of getting a degree
at MIT. You have just snarfed the course catalog from WebSIS. Assume there no cycles in course
prerequisites. You produce a directed graph G = (V, E) with two types of vertices V = C ∪ D:
regular class vertices c ∈ C and special degree vertices d ∈ D. The graph has a directed edge
e = (u, v) whenever a class u ∈ C is a prerequisite for v ∈ V (either a class or a degree). For
each class c ∈ C, you’ve computed your desire w(c) ∈ R for taking the class, based on interest,
difficulty, etc. (Desires can be negative.)

Give an O(V +E)-time algorithm to find the most desirable degree, that is, to find a degree d ∈ D
that maximizes the sum of the desires of the classes you must take in order to complete the degree:∑
{w(c) : path c ; d}. (For partial credit, give a slower algorithm.)

6.006 Final Exam Name 17

Problem 10. Histogram Hysterics [15 points]

Sometime in the future, you become a TA for 6.006. You have been assigned the job of maintaining
the grade spreadsheet for the class. By the end of the semester, you have a list g of final grades
for the n students, sorted by grade: g[0] < g[1] < · · · < g[n − 1]. In an attempt to draw various
beautiful histograms of these grades, the (rather odd) professors now ask you a barrage of questions
of the form “what is the sum of grades g[i : j], i.e., g[i] + g[i + 1] + · · · + g[j − 1]?” for various
pairs (i, j). (Dividing this sum by j − i then gives an average.)

To save you work computing summations, you decide to compute some of the sums g[i : j] ahead
of time and store them in a data structure. Unfortunately, your memory is large enough to store
only Θ(n) such sums. Once these sums have been computed, can you answer each query by the
professors in O(1) time? If not, give the fastest solution you can.

(a) Which sums g[i : j] should you compute ahead of time?

6.006 Final Exam Name 18

(b) In what data structure should you store these sums?

(c) How do you then compute a professors’ query for an arbitrary sum g[i : j], and how
long does this take?

6.006 Final Exam Name 19

Problem 11. Wonderland [20 points]

You have just taken a job at Wonderland (at the end of the Blue Line) as an amusement-ride
operator. Passengers can enter the ride provided it is not currently running. Whenever you decide,
you can run the ride for a fixed duration d (during which no passengers can enter the ride). This
action brings joy to the passengers, causing them to exit the ride and pay you d/ti dollars where ti
is the amount of time passenger i spent between arriving and exiting the ride. Thus, if you start the
ride as soon as a passenger arrives, then ti = d, so you get $1.00 from that passenger. But if you
wait d units of time to accumulate more passengers before starting the ride, then ti = 2d, so you
only get $0.50 from that passenger.

Every day feels the same, so you can predict the arrival times a0, a1, . . . , an−1 of the n passengers
that you will see. As passenger i arrives, you must decide whether to start the ride (if it is not
already running). If you start the ride at time aj , then you receive d/(d + aj − ai) dollars from
customers i ≤ j that have not yet ridden, and you can next start the ride at times ak ≥ aj +d. Your
goal is to maximize the total amount of money you make using dynamic programming.

(a) Clearly state the set of subproblems that you will use to solve this problem.

6.006 Final Exam Name 20

(b) Write a recurrence relating the solution of a general subproblem to solutions of smaller
subproblems.

6.006 Final Exam Name 21

(c) Analyze the running time of your algorithm, including the number of subproblems
and the time spent per subproblem.

(d) Write the solution to the original problem in terms of solutions to your subproblems.

6.006 Final Exam Name 22

Problem 12. Dance Dance Evolution [20 points]

You are training for the upcoming Dance Dance Evolution competition and decide to apply your
skills in dynamic programming to find optimal strategies for playing each song.

A simplified version of the problem can be modeled as follows. The song specifies a sequence of
“moves” that you must make. Each move is one of four buttons in the set B = { ↑ , ↓ , ← , → }
that you must press with one of your feet. An example of a song is

← , → , ↑ , ↓ , → , ← , ↓ , ↑ .

You have two feet. At any time, each foot is on one of the four buttons; thus, the current state of
your feet can be specified by an ordered pair (L, R) where L ∈ B denotes the button beneath your
left foot and R ∈ B denotes the button beneath your right foot.

One foot at a time:When you reach a move M ∈ B in the song, you must put one of your feet on
that button, transitioning to state (M, R) or (L, M). Note that you can change only one of
your feet per move. If you already have a foot on the correct button, then you do not need to
change any feet (though you are allowed to change your other foot).

Forbidden states:You are also given a list of forbidden states F , which you are never allowed to
be in. F might include states where both feet are on the same square, or states where you
would end up facing backwards.

Your goal is to develop a polynomial-time algorithm that, given an n-move song M1, M2, . . . ,Mn,
finds an initial state (L0, R0) and a valid sequence of transitions (Li, Ri)→ (Li+1, Ri+1) /∈ F , for
0 ≤ i < n, where Mi+1 ∈ {Li+1, Ri+1} and either Li = Li+1 or Ri = Ri+1,

(a) Clearly state the set of subproblems that you will use to solve this problem.

6.006 Final Exam Name 23

(b) Write a recurrence relating the solution of a general subproblem to solutions of smaller
subproblems.

6.006 Final Exam Name 24

(c) Analyze the running time of your algorithm, including the number of subproblems
and the time spent per subproblem.

(d) Write the solution to the original problem in terms of solutions to your subproblems.

SCRATCH PAPER

SCRATCH PAPER

