
Introduction to Algorithms: 6.006
Massachusetts Institute of Technology Tuesday, November 4th
Professors Ronald L. Rivest and Sivan Toledo Handout 10

Problem Set 5
This problem set is divided into two parts: Part A problems are programming tasks, and Part B
problems are theory questions.

Part A questions are due Tuesday, November 18th at 11:59PM.
Part B questions are due Thursday, November 20th at 11:59PM.

Solutions should be turned in through the course website in PDF form using LATEX or scanned
handwritten solutions.
A template for writing up solutions in LATEX is available on the course website.
Remember, your goal is to communicate. Full credit will be given only to the correct solution
which is described clearly. Convoluted and obtuse descriptions might receive low marks, even
when they are correct. Also, aim for concise solutions, as it will save you time spent on write-ups,
and also help you conceptualize the key idea of the problem.

Exercises are for extra practice and should not be turned in.
Exercises:

• CLRS 24.1-1 (page 591)

• CLRS 24.3-2 (page 600)

• CLRS 24.3-4 (page 600)

• CLRS 24.5-8 (page 614)

• CLRS 24.3-6 (page 600)

Part A: Due Tuesday, November 18th
1. (50 points) Implementing Dijkstra.

The Howe & Ser Moving Company is transporting the Caltech Cannon from Caltech’s cam-
pus to MIT’s and wants to do so most efficiently. Fortunately, you have at your disposal the
National Highway Planning Network (NHPN), packaged for you in ps5_dijkstra.zip.
You can learn more about the NHPN at
http://www.fhwa.dot.gov/planning/nhpn/

This data includes node and link text files from the NHPN. Open nhpn.nod and nhpn.lnk
in a text editor to get a sense of how the data is stored (datadict.txt has a more precise
description of the data fields and their meanings). To save you the trouble of parsing these
structures from a file, we have provided you with a Python module nhpn.py containing



2 Handout 10: Problem Set 5

code to load the text files into Node and Link objects. Read nhpn.py to understand the
format of the Node and Link objects you will be given.

Additionally, we have provided some tools to help you visualize the output from your al-
gorithms. You can use the Visualizer class to produce a KML (Google Earth) file. To
view such a file on Google Maps, place it in a web-accessible location, such as your Athena
Public directory, and then search for its URL on Google Maps.

For this problem, you will modify the file dijkstra.py. As you solve each part of the
problem, check your work by running test_dijkstra.py. As usual, remember to com-
ment your code, including docstrings at the top of each function.

(a) (5 points) Write a short function node_by_name(nodes, city, state) to
return a node from the given city/state. Note that some nodes have a description which
isn’t solely the city name, e.g. CAMBRIDGE NW or NORTH CAMBRIDGE, either of
which we would like to match a query where city==’CAMBRIDGE’. Given a choice
of more than one node, choose the first node that appears in the data.

(b) (5 points) The links you are given do not include weights, so instead we will use the
geographical positions of the edge’s nodes.
Write a function distance(node1, node2) to return the distance between two
NHPN nodes. Nodes come with latitude and longitude (in millionths of degrees). For
simplicity, treat these instead as (x, y) coordinates on a flat surface, where the distance
between two points can be easily calculated using the Pythagorean Theorem.
Hint: You may find the math.hypot function useful.

(c) (40 points) Implement Dijkstra’s algorithm to find the shortest path between two ver-
tices in a graph with non-negative edge weights.
Your function shortest_path(nodes, edges, weight, s, t)will be given
a graph (represented as a list of Node objects and a list of undirected Edge objects), a
function weight(node1, node2) which returns the weight of any edge between
node1 and node2, a source Node s and a destination Node t. Your function should
return a list of Node objects representing a path from s to t.
Dijkstra’s algorithm uses a priority queue, but this priority queue has one subtle re-
quirement not met by the heap.py implementation seen earlier in class. Dijkstra’s
algorithm calls decrease_key, but decrease_key requires the index of an item
in the heap, and Dijkstra’s algorithm would have no way of knowing the current index
corresponding to a particular Node. To solve this problem, the course staff has written
an augmented heap object, heap_id, with the following extra features:

• insert(key) returns a unique ID.
• A new method, decrease_key_using_id(ID, key) takes an ID instead

of an index.
• A new method, extract_min_with_id() extracts the minimum element and

returns a pair (key, ID)



Handout 10: Problem Set 5 3

You may import heap_id, without submitting the separate file.
Hint: The format in which you are given the data (a list of nodes, and a list of edges),
is not what you want to use for Dijkstra’s algorithm. Start by preprocessing the data
into a more useful graph representation. Don’t forget that the edges you are given are
undirected.

(d) (Optional) Included in nhpn.py is a method to convert a list of nodes to a .kml file.
.kml files can be viewed using Google Maps, by putting the file in a web-accessible
location (like your Athena Public directory), going to
http://maps.google.com and putting the URL in the search box.
Run visualize_path.py. This will create two files, path_flat.kml and
path_curved.kml. Both should be paths from Pasadena CA to Cambridge MA.
path_flat.kml was created using the distance function you wrote in part (b), and
path_curved.kml was created using a distance function that does not assume the
Earth is flat. Can you explain the differences? Also, try asking Google Maps for driving
directions from Caltech to MIT to get a sense of how similar their answer is.

Part B: Due Thursday, November 20th
1. (10 points) True or False.

Decide whether these statements are True or False. You must briefly justify all your answers
to receive full credit.

(a) (5 points) If some edge weights are negative, the shortest paths from s can be obtained
by adding a constant C to every edge weight, large enough to make all edge weights
nonnegative, and running Dijkstra’s algorithm.

(b) (5 points) Let P be a shortest path from some vertex s to some other vertex t. If the
weight of each edge in the graph is squared, P remains a shortest path from s to t.

2. (20 points) A longest path from s to t is defined as the path from s to t with the largest
possible weight.

(a) (5 points) In a directed graph G, when is a shortest path from vertices s to t well
defined? When is a longest path from s to t well defined?

(b) (7 points) The Bellman-Ford algorithm assigns a value d[v] to every vertex v. When
does d[v] equal the length of the shortest path from s to v? This may or may not be
related to whether the algorithm reports that there are negative-weight cycles in the
graph.

(c) (8 points) Describe how to use Bellman-Ford to find the longest path from s to t in a
directed graph. Your algorithm does not have to handle cases analogous to ones that
the normal shortest-paths Bellman-Ford does not handle.



4 Handout 10: Problem Set 5

3. (20 points) Even-Length Paths

An even-length path is a path traversing an even number of edges. Describe a modified
version of Dijkstra’s algorithm that finds the shortest even-length path in a graph G = (V, E)
from a given start vertex s to all vertices t ∈ V . The graph has non-negative edge weights.
Your solution should have the same asymptotic running time as Dijkstra’s algorithm. (HINT:
try solving the problem by constructing a graph G′ that is somehow related to G, running
Dijkstra’s algorithm on G′, and projecting the results back onto G.)


