
Introduction to Algorithms: 6.006
Massachusetts Institute of Technology October 21, 2008
Professors Ronald L. Rivest and Sivan Toledo Handout 3

Problem Set 4
This problem set is divided into two parts: Part A problems are programming tasks, and Part B
problems are theory questions.

Part A questions are dueTuesday, November 4 at 11:59PM.
Part B questions are dueThursday, November 6 at 11:59PM.

Solutions should be turned in through the course website in PDF form using LATEX or scanned
handwritten solutions.
A template for writing up solutions in LATEX is available on the course website.
Remember, your goal is to communicate. Full credit will be given only to the correct solution
which is described clearly. Convoluted and obtuse descriptions might receive low marks, even
when they are correct. Also, aim for concise solutions, as itwill save you time spent on write-ups,
and also help you conceptualize the key idea of the problem.

Exercises are for extra practice and should not be turned in.
Exercises:

• CLRS 22.2-3 (page 539)

• CLRS 22.2-8 (page 539)

• CLRS 22.3-9 (page 548)

• CLRS 22.3-10 (page 549)

Part A: Due Tuesday, November 4

1. (50 points) 2 × 2 × 2 Rubik’s Cube

We say that a configuration of the cube isk levels from the solved position if you can reach
the configuration in exactlyk twists, but cannot reach the it in any fewer twists.

Downloadps4 rubik.zip from the class website.

(a) (20 points) For this problem, we will use breadth-first search to recreate the column la-
beledf in the chart seen athttp://en.wikipedia.org/wiki/Pocket Cube.

Write a functionpositions at level in level.py that takes a nonnegative
integer argumentlevel, and returns the number of configurations that arelevel
levels from the solved configuration (rubik.I), using both quarter twists and half
twists (twisting the cube by 90 or 180 degrees).

2 Handout 3: Problem Set 4

The code inrubik.py only defines therubik.quarter twists move set, so
you should start by defining a new move set that includes half twists as well. Do not
modify rubik.quarter twists because you will need it for the next part of this
problem.

Test your code usingtest level.py, and submit it to the class website. Testcases
above level 8 are commented out, since they may require more memory than many
computers have.

(b) (30 points) Now we will solve the Rubik’s cube puzzle by finding the shortest path
between two configurations (the start and goal). For this part of the problem, we will
limit the move set to only allow quarter twists (half twists are not allowed).

Your code from part (a) could easily be modified to find shortest paths, but a BFS that
goes as deep as 14 levels will take a few minutes (not to mention the memory needed).
A few minutes might be fine for creating a Wikipedia page, but we want to solve the
cube fast!

Instead, we will take advantage of a property of the graph that we can see in the chart.
In particular, the number of nodes at level 7 (half the diameter) is much smaller than
half the total number of nodes.

With this in mind, we can instead do a two-way BFS, starting from each end at the
same time, and meeting in the middle. At each step, expand onelevel from the start
position, and one level from the end position, and then checkto see whether any of the
new nodes have been discovered in both searches. If there is such a node, we can just
read off parent pointers (in the correct order) to return theshortest path.

Write a functionshortest path in solver.py that takes two positions, and re-
turns a list of moves that is a shortest path between the two positions.

Test your code usingtest solver.py. Check that your code runs at close to the
same speed as level 7 from part(a) in the worst case, after modifying it to use just the
quater twist move set.

(c) (Optional) Go out and impress your friends with new 2x2x2 Rubik’s Cube solver you
just created! You can test your code usingtest human solver.py, which will
ask you to input the current configuration of a your Rubik’s cube, and then give you the
shortest solution path in human-readable symbols (you may need to readrubik.py
to understand these symbols though).

Part B: Due Thursday, November 6

1. (15 points) Connected Components

Given an undirected graphG = (V,E), a connected component of G is a set of verticies
C ⊆ V for which the following two properties hold.

Handout 3: Problem Set 4 3

• every two vertices inC are connected by a path.
v1, v2 ∈ C =⇒ ∃ a path inG v1 = x0 → x1 → ... → xk = v2

• no edge connects a vertex inside the set to a vertex outside the set.
v ∈ C andw ∈ V/C =⇒ {v, w} /∈ E
(V/C is the setV minus the setC)

Give anO(V + E)-time algorithm for partitioning an undirected graph into connected com-
ponents. That is, given a graphG = (V,E) return a setS = {Ci} where eachCi is a
connected component ofG and

⋃
Ci = V

2. (20 points) Eliminating Cycles by Removing One Edge

For each of the following statements, prove the statement orgive a counter example to show
that it is false. If you give a counter example, give one with the fewest possible vertices. Use
LATEX to draw counter-example graphs if necessary (the solutiontemplate contains a drawing
of the following graph to get you started).

r r r

r r r

r r r

-

6

�
���

(a) (10 points) If DFS on a graphG produces exactly one back edge, then it is possible to
remove an edge fromG to make the graph acyclic.

(b) (10 points) If G is cyclic but can be made acyclic by removing one edge, then DFS
will encounter exactly one back edge.

3. (15 points) Graphs and Matrices

Theincidence matrix of an undirected graphG = (V,E) is an|V | × |E| matrixU , in which
every column corresponds to an edgee = {i, j} ∈ E. The entries of columne = {i, j} are
all zero except for the entries in rowsi andj which are both1.

Consider the matrixA = UUT . (that is,A is the matrix product ofU and its transpose; the
i, j entry of a productX = Y ∗ ZT is Xi,j =

∑
k Yi,kZj, k where the summation is over

a column ofY and a column ofZ.) Describe two ways in which the entries ofA relate to
properties of the graphG.

