
Introduction to Algorithms: 6.006
Massachusetts Institute of Technology Fall 2008
Professors Ronald L. Rivest and Sivan Toledo Handout 7

Quiz 1 Review

Contents

1 Python 2

2 Analysis Methods 2
2.1 Recurrences . 2
2.2 Asymptotic Growth . 3
2.3 Runtime Analysis . 3
2.4 Amortized Analysis . 3

3 Data Structures 3
3.1 Arrays . 3
3.2 Trees . 4

3.2.1 Binary Search Trees . 4
3.2.2 AVL Trees . 5

3.3 Heaps . 6
3.4 Hash . 7
3.5 Augmented Data Structures . 8

4 Sorting 8
4.1 definitions . 8
4.2 Insertion Sort . 9
4.3 Merge Sort . 10
4.4 Heap Sort . 11
4.5 Counting Sort . 12

5 Other 13
5.1 Merging lists . 13
5.2 Rabin Karp String Matching . 13
5.3 Binary Search . 13
5.4 Dynamic resizing . 14
5.5 Divide and Conquer . 14

2 Handout 7: Quiz 1 Review

1 Python
Though we are not aiming to test your python knowledge, you should now be familiar with the
running times of operations on lists, sets, and dictionaries. Also, Understand how methods such as

contains are used in python.

1. Lists
How long does it take to ... (you may assume lists are of length n)

(a) ... access an element:

(b) ... concatenate (L1 + L2):

(c) ... append (L1.append(elt)):

(d) ... slice a list:

(e) ... len:

2. Sets
How long does it take to ... (you may assume sets have n elements)

(a) ... intersect two sets:

3. Dictionaries
How long does it take to ...

(a) ... access an element:

(b) ... contains (x in d):

2 Analysis Methods

2.1 Recurrences
A good site for reviewing recurrences: http://www.cs.duke.edu/ ola/ap/recurrence.html
Especially the “Recurrence Relations to Remember” section.

Handout 7: Quiz 1 Review 3

How do we obtain recurrence equations from code?

Describe the following recurrence solution methods

• substitution (guess and check)

• iteration (plug and chug)

• recursion tree

• master method

2.2 Asymptotic Growth
Define

1. f(n) = O(g(n))

2. f(x) = Ω(g(x))

3. f(x) = Θ(g(x))

2.3 Runtime Analysis
Be able to analyze code / an algorithm and determine its runtime.

2.4 Amortized Analysis
What is the idea behind amortized analysis?
Know how to create, bound and solve cost equations. (See the dynamically resizing hash tables or
the textbook for a examples of amortized analysis problems)

3 Data Structures
What is an Abstract Data Type?

3.1 Arrays
(aka Python lists) What is the runtime of insertion, deletion, and search in (i) a sorted array (ii) an
unsorted array.

4 Handout 7: Quiz 1 Review

3.2 Trees
3.2.1 Binary Search Trees

1. Describe at a high level the data structure

2. Describe how find works

3. Describe how insert works

4. Describe how delete works

5. Describe how find-min works

6. Describe how next-larger works

7. Describe best and worst case performance of the above BST operations

Handout 7: Quiz 1 Review 5

3.2.2 AVL Trees

1. What BST problem are AVLs trying to solve?

2. Describe the augmentation and augmentation invariant.

3. Describe a left/right rotation

4. Explain how/when an AVL uses rotations

5. Describe best and worst case performance of the above BST operations on an AVL tree.

6 Handout 7: Quiz 1 Review

3.3 Heaps
1. Describe at a high level the data structure

2. Describe the heap invariant

3. Describe / write psuedocode for the following operations. And give their runtimes.

(a) extract-max

(b) heapify

(c) build

(d) increase-key

(e) insert

Handout 7: Quiz 1 Review 7

3.4 Hash
1. Describe what a hash function is.

2. How do hash tables work? What assumptions do we make about the hash functions used?

3. What are collisions, and how do we handle them?

4. Describe how a probing hash table with linear probing works.

5. Describe how a probing hash table with double hashing works.

6. What is a rolling hash?

8 Handout 7: Quiz 1 Review

3.5 Augmented Data Structures

4 Sorting

4.1 definitions
What does it mean for a sort to be ...

1. ... in place:

2. ... stable:

3. ... a selection sort:

Handout 7: Quiz 1 Review 9

4.2 Insertion Sort
1. Describe at a high level the sorting algorithm

2. Write out the algorithm in psuedo-code

3. Runtime (best case? worst case?)

4. What benefits (pitfalls) does this algorithm have?

5. Is this sort stable? in place?

10 Handout 7: Quiz 1 Review

4.3 Merge Sort
1. Describe at a high level the sorting algorithm

2. Write out the algorithm in psuedo-code

3. Runtime (best case? worst case?)

4. What benefits (pitfalls) does this algorithm have?

5. Is this sort stable? in place?

Handout 7: Quiz 1 Review 11

4.4 Heap Sort
1. Describe at a high level the sorting algorithm

2. Write out the algorithm in psuedo-code

3. Runtime (best case? worst case?)

4. What benefits (pitfalls) does this algorithm have?

5. Is this sort stable? in place?

12 Handout 7: Quiz 1 Review

4.5 Counting Sort
1. Describe at a high level the sorting algorithm

2. Write out the algorithm in psuedo-code

3. Runtime (best case? worst case?)

4. What benefits (pitfalls) does this algorithm have?

5. Is this sort stable? in place?

Handout 7: Quiz 1 Review 13

5 Other

5.1 Merging lists
1. Describe how to merge two sorted lists.

2. What is the runtime of the merge?

3. What is the space requirement of the merge?

5.2 Rabin Karp String Matching
1. How does Rabin-Karp string matching work?

2. What is the runtime of the algorithm?

3. What is the space requirement of algorithm?

5.3 Binary Search
Know the difference between a Binary Search, and a Binary Tree. Do you need a binary tree in
order to perform a binary search?

1. How does a Binary Search work?

2. What is the runtime of the algorithm?

14 Handout 7: Quiz 1 Review

5.4 Dynamic resizing
1. What is the high level idea of dynamically resizing a data structure?

2. What sort of analysis would you use to determine the cost of a dynamically resizing data
structure?

3. Describe how to resize hash tables and analyze the new runtimes of hash table operations.

5.5 Divide and Conquer
What are the stages of Divide and Conquer?

1.

2.

3.

Priority Queues

1. What is an abstract data type?

2. What are the operations of a Priority Queue?

3. What is a good implementation of a Priority Queue?

