
Introduction to Algorithms: 6.006
Massachusetts Institute of Technology October 7, 2008
Professors Ronald L. Rivest and Sivan Toledo Handout 3

Problem Set 3
This problem set is divided into two parts: Part A problems are programming tasks, and Part B
problems are theory questions.

Part A questions are dueTuesday, October 21 at 11:59PM.
Part B questions are dueThursday, October 23 at 11:59PM.

Solutions should be turned in through the course website in PDF form using LATEX or scanned
handwritten solutions.
A template for writing up solutions in LATEX is available on the course website.
Remember, your goal is to communicate. Full credit will be given only to the correct solution
which is described clearly. Convoluted and obtuse descriptions might receive low marks, even
when they are correct. Also, aim for concise solutions, as itwill save you time spent on write-ups,
and also help you conceptualize the key idea of the problem.

Exercises are for extra practice and should not be turned in.
Exercises:

• CLRS 6.1-3 (page 130)

• CLRS 6.2-1 (page 132)

• CLRS 6.3-1 (page 135)

• CLRS 6.4-1 (page 136)

• CLRS 6.4-3 (page 136)

• CLRS 6.5-4 (page 141)

• CLRS 8.2-2 (page 170)

• CLRS 8.4-1 (page 177)

Part A: Due Tuesday, October 21

1. (50 points) Gas Simulation

In this problem, we consider a simulation ofn bouncing balls in two dimensions inside a
square box. Each ball has a mass and radius, as well as a position (x, y) and velocity vector,
which they follow until they collide with another ball or a wall. Collisions between balls
conserve energy and momentum. This model can be used to simulate how the molecules



2 Handout 3: Problem Set 3

of a gas behave, for example. The world is400
√

n by 400
√

n units wide, so the area is
proportional to the number of balls. Each ball has a minimum radius of 16 units and a
maximum radius of 128 units.

Downloadps3 gas.zip from the class website. For the graphical interface to work,you
will need to have pygame or tkinter installed. They currently run slightly different interfaces.
Feedback is appreciated.

Run the simulation withpython gas.py. You may notice that performance, indicated
by the rate of simulation steps per second, is highly dependent on the number of balls. Your
goal is to improve the running time of thedetect collisions function. This function
computes which pairs of balls collide (two balls are said tocollide if they overlap) and returns
a set ofball pair objects for collision handling. You should not need to modify the rest
of the simulation. (If you think something else should be modified, e-mail6.006-staff
with your feedback.)

(a) (4 points) What is the running time ofdetect collisions in terms ofn, the
number of balls?

(b) (30 points) Improve thedetect collisions method. Come up with an asymp-
totically faster algorithm than the one from part (a), then implement it. Put your code
in detection.py, and uncomment the line ingas.py that imports your new code
(just below thedetect collisions method).

Your new code must still find all the same collisions found by the old code (any pair of
balls for whichcolliding returns true). To check that you are detecting the same
collisions, run your code and the original code with the sameparameters, and make
sure that they detect the same number of collisions.

Submitdetection.py to the class website.

(c) (12 points) Argue that your part (b) algorithm is asymptotically faster. You do not need
to give a formal proof; be concise, but convincing.

(d) (4 points) Using your improved code, after 1000 timesteps with 200 balls, how many
collisions did you get? How many simulation steps per seconddid you run? How many
simulation steps per second could you run with the original code and the same number
of balls?

Part B: Due Thursday, October 23

1. (25 points) Find the Largesti Elements in Sorted Order

Given an array ofn numbers, we want to find thei largest elements in sorted order. That is,
we want to produce a list containing, in order, the largest element of the array, followed by
the 2nd largest, etc., until theith largest. Assume thati is fixed beforehand, and all inputs
haven > i. (That is,i is chosen beforehand, so thati does not depend onn.)



Handout 3: Problem Set 3 3

(a) (5 points) One idea is to sort the input array in descending order, and then list the first
i elements of the array. Analyze the worst-case running time of this algorithm.

(b) (10 points) Describe an algorithm that achieves a faster asymptotic time bound than
the algorithm in Part (a). Analyze its running time in terms of bothn andi.

(c) (10 points) Now suppose that the elements of the array are drawn, withoutreplacement,
from the set{1, 2, ..., 2n}. Given this additional constraint, can you improve upon your
part (b) running time? If so, describe your algorithm and analyze its running time in
terms ofn andi. If not, why not?

2. (25 points) d-ary Heaps

In class, we’ve seen binary heaps, where each node has at mosttwo children. Ad-ary heap
is a heap in which each node has at mostd children. For example, this is a3-ary heap:

95

78

61 8 42

56

54 10 7

28

21

(a) (2 points) Suppose that we implement ad-ary heap using an arrayA, similarly to how
we implement binary heaps. That is, the root is contained inA[0], its children are
contained inA[1 . . . d], and so on. How do we implement the PARENT(i) function,
which computes the index of the parent of theith node, for ad-ary heap?

(b) (2 points) Now that there might be more than two children, LEFT and RIGHT are no
longer sufficient. How do we implement the CHILD (i, k) function, which computes the
index of thekth child of theith node? (0 ≤ k < d)

(c) (5 points) Express, in asymptotic notation, the height of ad-ary heap containingn
elements in terms ofn andd.

(d) (5 points) Give the asymptotic running times (in terms ofn andd) of the HEAPIFY and
INCREASE-KEY operations for ad-ary heap containingn elements.

(e) (8 points) Let’s suppose that when we build ourd-ary heap, we choosed based on the
size of the input array,n. What is the height of the resulting heap (in terms ofn) if we
choosed = Θ(1)? What ifd = Θ(log(n))? What aboutd = Θ(n)?

(HINT: remember thatlog
d
(n) = log(n)

log(d)
. This might simplify your expressions a little.)

(f) (3 points) How does the choice ofd affect the running times of HEAPIFY and INCREASE-
KEY?


