
Introduction to Algorithms: 6.006
Massachusetts Institute of Technology September 23, 2008
Professors Ronald L. Rivest and Sivan Toledo Handout 4

Problem Set 2

This problem set is divided into two parts: Part A problems are programming tasks, and Part B
problems are theory questions.

Part A questions are dueTuesday, Tuesday, October 7th at 11:59PM.
Part B questions are dueThursday, Thursday, October 9th at 11:59PM.

Solutions should be turned in through the course website in PDF form using LATEX or scanned
handwritten solutions.
A template for writing up solutions in LATEX is available on the course website.
Remember, your goal is to communicate. Full credit will be given only to the correct solution
which is described clearly. Convoluted and obtuse descriptions might receive low marks, even
when they are correct. Also, aim for concise solutions, as itwill save you time spent on write-ups,
and also help you conceptualize the key idea of the problem.

Exercises are for extra practice and should not be turned in.
Exercises:

• CLRS 11.2-1 (page 228)

• CLRS 11.2-2 (page 229)

• CLRS 11.3-1 (page 236)

• CLRS 11.3-3 (page 236)

• Prove that red-black trees are balanced, i.e., if a red-black tree containsn nodes, then its
height isO(log n). Red-black trees are binary search trees satisfying the following proper-
ties:

1. Each node is augmented with a bit signifying whether the node is red or black.

2. If a node is red, then both of its children are black.

3. The paths from the root to any leaf contain the same number of black nodes.

Part A: Due Tuesday, October 7th

1. (50 points) Longest Common Substring

Humans have 23 pairs of chromosomes, while other primates like chimpanzees have 24
pairs. Biologists claim that human chromosome #2 is a fusionof two primate chromosomes

2 Handout 4: Problem Set 2

that they call 2a and 2b. We wish to verify this claim by locating long nucleotide chains
shared between the human and primate chromosomes.

We define thelongest common substring of two strings to be the longest contiguous string
that is a substring of both strings e.g. the longest common substring of DEADBEEF and
EA7BEEF is BEEF.1 If there is a tie for longest common substring, we just want tofind one
of them.

Downloadps2-dna.zip from the class website.

(a) (2 points)
Ben Bitdiddle wrotesubstring1.py. What is the asymptotic running time of his
code? Assume|s| = |t| = n.

(b) (2 points)
Alyssa P Hacker realized that by only comparing substrings of the same length, and by
saving substrings in a hash table (in this case, a Python set), she could vastly speed up
Ben’s code.

Alyssa wrotesubstring2.py. What is the asymptotic running time of her code?

(c) (12 points) Recall binary search from Problem Set 1. Using binary searchon the
length of the string, implement anO(n2 log n) solution. You should be able to copy
Alyssa’s k substring code without changing it, and just rewrite the outer loop
longest substring.

Check that your code is faster thansubstring2.py for chr2 first 10000 and
chr2a first 10000.

Put your solution insubstring3.py, and submit it to the class website.

(d) (30 points)
Rabin-Karp string searching is traditionally used to search for a particular substring
in a large string. This is done by first hashing the substring,and then using a rolling
hash to quickly compute the hashes of all the substrings of the same length in the large
string.

For this problem, we have two large strings, so we can use a rolling hash on both of
them. Using this method, implement anO(n log n) solution forlongest substring.
You should be able to copy over your outer looplongest substring from part (c)
without changing it, and just rewritek substring.

Your code should work given any two Python strings (seetest-substring.py for
examples). We recommend using theord function to convert a character to its ascii
value.

Check that your code is faster thansubstring3.py for chr2 first 100000 and
chr2a first 100000.

1Do not confuse this with thelongest common subsequence, in which the characters do not need to be contiguous.
The longest common subsequence of DEADBEEF and EA7BEEF is EABEEF.

Handout 4: Problem Set 2 3

Put your solution insubstring4.py, and submit it to the class website.

Remember to thoroughly comment your code, including an explanation of any param-
eters chosen for the hash function, and what you do about collisions.

(e) (4 points)
The human chromosome 2 and the chimp chromosomes 2a and 2b arequite large (over
100,000,000 nucleotides each) so we took the first and last million nucleotides of each
chromosome and put them in separate files.

chr2 first 1000000 contains the first million nucleotides of human chromosome
2, andchr2a first 1000000 contains the first million nucleotides of chimpanzee
chromosome 2a. Note: these files contain both uppercase and lowercase letters that are
used by biologists to distinguish between parts of the chromosomes called introns and
extrons.

Run substring4.py on the following DNA pairs, and submit the lengths of the
substrings (leave more than an hour for this part):

chr2 first 1000000 andchr2a first 1000000
chr2 first 1000000 andchr2b first 1000000
chr2 last 1000000 andchr2a last 1000000
chr2 last 1000000 andchr2b last 1000000

If your code works, and biologists are correct, then the firstmillion codons of chr2 and
chr2a should have much longer substrings in common than the first million codons of
chr2 and chr2b. The opposite should be true for the last million codons.

(f) Optional: Make your code run inO(n log k) time, wherek is the length of the longest
common substring.

Part B: Due Thursday, October 9th

1. (25 points) Augmented BST :max-gap

Continuing with the airline reservation problem from class, suppose that we no longer allow
airlines to choose their desired takeoff times. Instead, wedetermine the largest time interval
between existing departures and assign the flight a time within that slot.

Conceptually, this is equivalent to finding the maximum gap between consecutive integers
in a sorted list. For example:

[0, 60, 630, 855, 1140, 1440]

represents a day with reservations at 1:00 AM, 10:30 AM, 2:15PM, and 7 PM. A new
reservation request would then be inserted in the range(60, 630) since it has a gap of570
minutes, which is the largest interval between flights.

Here, the list elements represent existing flight departurereservations in minutes since mid-
night. Also, notice that we constrain the list on both ends with placeholder “flights” for

4 Handout 4: Problem Set 2

the beginning and end of the day (1440 is the total number of minutes in a day); these are
inserted before any flight and are never deleted.

To maintain this list of numbers and support the operationsmax-gap,search, andinsert
we will use an augmented BST; that is, we will use a binary search tree in which every node
will contain the flight time, plus some other information to support themax-gap queries.

(a) (7 points) Describe how to augment the tree. What additional information should be
stored in every node?

(b) (9 points) Given the augmented binary search tree, describe how to efficiently answer
max-gap queries.max-gap returns the range of the maximum gap; so in the example
above the returned value would be(60, 630) not570. What is the asymptotic worst-case
running time ofmax-gap? State how you break ties.

(c) (9 points) Explain how to extend theinsert operation so that the tree remains cor-
rectly augmented. You can assume thatinsert is given a flight time in minutes since
midnight and starts by inserting a this new flight into the binary search tree. Show
how to add the augmented information to the new tree node, andhow to update the
augmented information in other nodes (if necessary). Analyze the running time of
insert.

(d) (optional) The above method doesn’t describe how we choose a time withinthe appro-
priate interval. Describe how sequential requests would beassigned if the mechanism
were to insert (i) at the halfway point of the interval (ii) 5 minutes from the start of the
interval (you may assume that the interval is always larger than 5 minutes).

2. (25 points) Length of Chains in Uniform Hashing

In class we only discussed the expected length of chains. Forexample, if we hashn items
into n slots and assume that the hashing is uniform, then the expected length of every chain
is just 1. But as the two graphs below show, for largen we are very likely to get longer
chains; the question is how long. In this problem we shall estimate how long the chains get.
We use an approach that is not completely rigorous but which gives useful insights; the same
results can also be proved rigorously. (The Python code thatproduced these graphs is on the
course’s web site.)

Handout 4: Problem Set 2 5

100 101 102 103 104 105 106 107

size of hash table

0

2

4

6

8

10

12
le

n
g
th

 o
f

lo
n
g
e
st

 c
h
a
in

longest chain in uniform hashing (m=n)

1
,4

7
1

,1
2

5
 (o

u
t o

f 4
,0

0
0

,0
0

0
)

1
,4

7
2

,4
2

8
7

3
5

,8
5

1

244,5
73

61,6
31

12,1
97

2,1
23

297

40

5

(a) (5 points) Argue that whenn keys are inserted to a hash table withm slots, and assum-
ing uniform hashing, then the probabilityQk that exactlyk keys hash to one particular
slot is

Qk =

(

n

k

) (

1 −
1

m

)n−k (

1

m

)k

.

(The expression
(

n

k

)

, pronounced “n choosek”, is the number of ways to choosek
items out ofn; its value is n!

k!(n−k)!
.)

(b) (5 points) The statistical distribution ofQk is called thebinomial distribution. One way
to estimateQk is to relate the binomial distribution to another statistical distribution
called thePoisson distribution, for which the probability is given by

Pk(λ) =
λke−λ

k!

whereλ is a parameter of the distribution. It turns out that for largem andn,

Qk(m, n) ≈ Pk

(n

m

)

.

In this problem, we will not try to prove or use sharp bounds onthis approximation, but
will use it as if it was an equality; this is not rigorous, but it does give good intuition
and good approximations for largem andn.
Use Strirling’s approximation forn! (Equation 3.17 in the textbook) and the limit
limn→∞

(1 + x

n
)n = ex (Equation 3.13 in the textbook) to derive the approximation

result for the casem = n.

(c) (5 points) Use indicator random variables (Section 5.2 in the textbook) to estimate the
expected number of empty slots, slots with one key, and slotswith two keys for the case
m = n. Hint: for each of these analyses, you will need an indicatorrandom variable
for each slot, as well as one random variable that is the sum ofthe indicators; use the
linearity of expectation.

6 Handout 4: Problem Set 2

(d) (5 points) Prove that the chain lengtĥk for which the expected number of chains of
that length is close to1 is k̂ = Θ(lg n/ lg lg n), assuming againn = m. Hint: write an
equation using your approximation forE[Y

k̂
]; then take a logarithm of both sides and

use the fact thatlg(n!) = Θ(n lg n) (Equation 3.18 in the textbook); finally, use the
definition ofΘ to complete the proof.

(e) (5 points) Does your result agree with the experimental results that are shown in the
graph above? Your analysis relies on approximations, but they are pretty good for the
problem sizes in the graphs.

