
compress.py
Ronald L. Rivest
October 9, 2007

Routines to compress a photo using dynamic programming
Inputs:
image (read from file)
k (positive integer)
t (positive integer)
Output:
image (written to file)
Procedure:
Consider image as array of kxk pixel "blocks"
Find "best" representation of image as a set of t
non-overlapping constant-rgb rectangles, where each rectangle is
a union of blocks, and solution has "hierarchical"
property: it can be derived by making top-level
cut all the way across image, and doing same recursively
on two parts. Best solution is one that minimizes
sum of squares between actual pixel values and ones
derived from solution.

import Image # Python Imaging Library

def get_image(filename):
 """
 Read image from file and return pixel array of RGB values.
 Upper left is pixels[0][0].
 In general, pixel[row][col] is (r,g,b) tuple at given position.
 """
 im = Image.open(filename)
 w,h = im.size
 data = im.getdata()
 pixels = [[(0,0,0)]*w for i in range(h)]
 for i in range(h):
 for j in range(w):
 pixels[i][j] = data[i*w+j]
 return pixels

def save_image(pixels, filename):
 """
 Save image (given as pixel array) as a file with given filename.
 """
 w,h = image_size = (len(pixels[0]),len(pixels))
 im = Image.new('RGB',image_size)
 data = [(0,0,0)]*(w*h)
 for i in range(h):
 for j in range(w):
 data[i*w+j] = pixels[i][j]
 im.putdata(data)
 im.save(filename)

def one_part_subproblem(ak,bk,ck,dk):
 """
 Find value of one-part solution to subproblem (ak,bk,ck,dk);
 save this value in subproblem_value, and save solution itself
 (i.e. rgb values best for this rectangle) in subproblem_soln.

 (Value is sum of squares of differences between actual pixel
 values and average pixel values for that rectangle.)
 """
 stats = [0,0,0,0,0,0,0]
 for ik in range(ak,bk):
 for jk in range(ck,dk):
 for i in range(len(stats)):
 stats[i] += block_stats[(ik,jk)][i]
 n,rss,rs,gss,gs,bss,bs = stats
 v = rss - (rs**2)//n + gss - (gs**2)//n + bss - (bs**2)//n
 subproblem_value[(ak,bk,ck,dk,1)] = v
 subproblem_soln[(ak,bk,ck,dk,1)] = [(ak,bk,ck,dk,rs/n,gs/n,bs/n)]

def multipart_subproblem(ak,bk,ck,dk,tt):
 """
 Solve subproblem with blocks (ik,jk)
 where:
 0 <= ak <= ik < bk <= hk
 0 <= ck <= jk < dk <= wk
 by dividing it into exactly tt parts
 Save solution value in subproblem_value, and save in
 subproblem_soln either:
 (ak,bk,ck,dk,r,g,b) [for t == 1]
 list of two subproblems to use [for t>1]
 """
 global block_stats,subproblem_value, subproblem_soln
 if (bk-ak)*(dk-ck)>tt:
 subproblem_value[(ak,bk,ck,dk,tt)] = 1e100
 best_v = 1e100
 best_soln = []
 # horizontal cuts:
 for ek in range(ak+1,bk):
 for t1 in range(1,tt):
 v1 = subproblem_value[(ak,ek,ck,dk,t1)]
 v2 = subproblem_value[(ek,bk,ck,dk,tt-t1)]
 if v1+v2<best_v:
 best_v = v1+v2
 best_soln = [(ak,ek,ck,dk,t1),(ek,bk,ck,dk,tt-t1)]
 # vertical cuts
 for fk in range(ck+1,dk):
 for t1 in range(1,tt-1):
 v1 = subproblem_value[(ak,bk,ck,fk,t1)]
 v2 = subproblem_value[(ak,bk,fk,dk,tt-t1)]
 if v1+v2<best_v:
 best_v = v1+v2
 best_soln = [(ak,bk,ck,fk,t1),(ak,bk,fk,dk,tt-t1)]
 subproblem_value[(ak,bk,ck,dk,tt)] = best_v
 subproblem_soln[(ak,bk,ck,dk,tt)] = best_soln

def generate_and_solve_subproblems(pixels,k,t):
 """
 Consider given h x w image of pixels
 as divided into k x k blocks.
 Number of k x k blocks is:
 hk = (h-1)/k (height) by
 wk = (w-1)/k (width)
 Consider each (ak,bk,ck,dk) subimage

 consisting of blocks (ik,jk) where
 0 <= ak <= ik < bk <= hk
 0 <= ck <= jk < dk <= wk
 ("k" suffix means we are talking about blocks, not pixels.)
 Problems are considered in order of increasing size;
 so that when a problem is done, all of its smaller
 component problems have already been solved.
 """
 w,h = (len(pixels[0]),len(pixels))
 hk = (h-1)//k + 1
 wk = (w-1)//k + 1
 for uk in range(1,hk+1):
 for ak in range(0,hk-uk+1):
 bk = ak + uk
 for vk in range(1,wk+1):
 for ck in range(0,wk-vk+1):
 dk = ck + vk
 one_part_subproblem(ak,bk,ck,dk)
 for tt in range(2,t+1):
 multipart_subproblem(ak,bk,ck,dk,tt)

def compute_block_stats(pixels,k):
 """
 Compute statistics for each kxk block in picture.
 Stats are a 7-tuple:
 n, rss, rs, gss,gs,bss,bs
 where
 n = number of pixels in block
 (note blocks on right and bottom may be partial)
 rss = red sum of squares of pixel values
 rs = red sum of pixel values
 gss = green sum of squares of pixel values
 gs = green sum of pixel values
 bss = blue sum of squares of pixel values
 bs = blue sum of pixel values
 Store stats in block_stats.
 """
 global block_stats
 w,h = (len(pixels[0]),len(pixels))
 hk = (h-1)//k + 1
 wk = (w-1)//k + 1
 block_stats = {}
 for i in range(h):
 ik = i//k
 for j in range(w):
 jk = j//k
 if not block_stats.has_key((ik,jk)):
 block_stats[(ik,jk)] = (0,0,0,0,0,0,0)
 r,g,b = pixels[i][j]
 n,rss,rs,gss,gs,bss,bs = block_stats[(ik,jk)]
 n += 1
 rss += r*r
 rs += r
 gss += g*g
 gs += g
 bss += b*b
 bs += b

 block_stats[(ik,jk)] = (n,rss,rs,gss,gs,bss,bs)

def generate_solution_parts(subproblem):
 """
 Return list that contains all one-part
 solution parts for this subproblem, by
 recursively unwinding solutions with more parts.
 """
 global subproblem_soln
 ak,bk,ck,dk,t = subproblem
 if t==1:
 return list(subproblem_soln[subproblem])
 else:
 L = []
 for soln_part in subproblem_soln[subproblem]:
 L.extend(generate_solution_parts(soln_part))
 return L

def main():
 """
 Demonstrate dynamic programming image compression.
 """
 global block_stats, subproblem_value, subproblem_soln
 filename_list = ["eye",
 "kilimanjaro",
 "pumpkin",
 "firetruck"]
 for f in filename_list:
 input_filename = f+".jpg"
 pixels = get_image(input_filename)
 w,h = (len(pixels[0]),len(pixels))
 # try different k x k block sizes
 for k in [256,128,64,32,16,8]:
 if w//k > 50: continue
 hk = (h-1)//k + 1
 wk = (w-1)//k + 1
 # print "hk = ",hk,"wk = ",wk
 compute_block_stats(pixels,k)
 # try different number t of parts wanted
 for t in [10,20,30,40,50,60,70,80,90,100]:
 if t>(hk*wk):
 break
 subproblem_value = {}
 subproblem_soln = {}
 generate_and_solve_subproblems(pixels,k,t)
 pixels_out = [[0]*w for i in range(h)]
 for soln in generate_solution_parts((0,hk,0,wk,t)):
 ak,bk,ck,dk,r,g,b = soln
 for i in range(ak*k,min(bk*k,h)):
 for j in range(ck*k,min(dk*k,w)):
 pixels_out[i][j] = (r,g,b)
 output_filename = "%s_%03d_%03d.jpg"%(f,k,t)
 save_image(pixels_out,output_filename)
 print output_filename

Original

10 rectangles

100 rectangles

Original

10 rectangles

100 rectangles

