compress.py
Ronald L. Rivest
October 9, 2007

Routines to compress a photo using dynamic programming

Inputs:
image (read from file)
k (positive integer)
t (positive integer)
Output:
image (written to Ffile)
Procedure:

Consider image as array of kxk pixel "blocks"

Find "best”™ representation of image as a set of t
non-overlapping constant-rgb rectangles, where each rectangle is
a union of blocks, and solution has "hierarchical"

property: it can be derived by making top-level

cut all the way across image, and doing same recursively

on two parts. Best solution is one that minimizes

sum of squares between actual pixel values and ones

derived from solution.

HHEFHFHFHFHRFHRFHRFREE HFHHF

import Image # Python Imaging Library

def get_image(Filename):
Read image from file and return pixel array of RGB values.
Upper left is pixels[0][0]-
In general, pixel[row][col] is (r,g,b) tuple at given position.
im = Image.open(filename)
w,h = im.size
data = im.getdata()
pixels = [[(0,0,0)]*w for i in range(h)]
for i1 in range(h):
for j in range(w):
pixels[i][J] = data[i*w+j]
return pixels

def save image(pixels, filename):

Save image (given as pixel array) as a file with given filename.
w,h = image_size = (len(pixels[0]),len(pixels))
im = Image.new("RGB", image_size)
data = [(0,0,0)]*(w*h)
for i in range(h):

for j in range(w):

data[i*w+j] = pixels[ilLi]l

im_putdata(data)
im.save(filename)

def one_part_subproblem(ak,bk,ck,dk):
Find value of one-part solution to subproblem (ak,bk,ck,dk);
save this value in subproblem value, and save solution itself
(i.e. rgb values best for this rectangle) in subproblem soln.

(Value is sum of squares of differences between actual pixel
values and average pixel values for that rectangle.)
stats = [0,0,0,0,0,0,0]
for ik in range(ak,bk):
for jk in range(ck,dk):
for i in range(len(stats)):
stats[i] += block_stats[(ik,jk)][1]
n,rss,rs,gss,gs,bss,bs = stats
vV = rss - (rs**2)//n + gss - (gs**2)//n + bss - (bs**2)//n
subproblem_value[(ak,bk,ck,dk,1)] = v
subproblem_soln[(ak,bk,ck,dk,1)] = [(ak,bk,ck,dk,rs/n,gs/n,bs/n)]

def multipart_subproblem(ak,bk,ck,dk,tt):
Solve subproblem with blocks (ik,jk)
where:
0 <= ak <= i1k < bk <= hk
0 <= ck <= jk < dk <= wk
by dividing it into exactly tt parts
Save solution value in subproblem value, and save in
subproblem_soln either:
(ak,bk,ck,dk,r,g,b) [for t == 1]
list of two subproblems to use [for t>1]
global block_stats,subproblem_value, subproblem_soln
it (bk-ak)*(dk-ck)>tt:
subproblem_value[(ak,bk,ck,dk,tt)] = 1e100
best v = 1el00
best _soln = []
horizontal cuts:
for ek in range(ak+1,bk):
for t1 in range(l,tt):
vl = subproblem value[(ak,ek,ck,dk,tl)]
v2 = subproblem value[(ek,bk,ck,dk,tt-tl1)]
if vli+tv2<best v:
best v = v1+v2
best_soln = [(ak,ek,ck,dk,tl), (ek,bk,ck,dk,tt-tl)]
vertical cuts
for fk in range(ck+1,dk):
for t1 in range(l,tt-1):
vl = subproblem value[(ak,bk,ck,fk,tl)]
v2 = subproblem_value[(ak,bk,fk,dk,tt-t1)]
if vi+v2<best v:
best v = v1+v2
best_soln = [(ak,bk,ck,fk,tl), (ak,bk,fk,dk,tt-tl1)]
subproblem_value[(ak,bk,ck,dk,tt)] = best v
subproblem_soln[(ak,bk,ck,dk,tt)] = best_soln

def generate_and_solve subproblems(pixels,k,t):
Consider given h x w image of pixels
as divided into k x k blocks.
Number of k x k blocks is:
hk = (h-1)/k (height) by
wk = (w-1)/k (width)
Consider each (ak,bk,ck,dk) subimage

consisting of blocks (ik,jk) where
0 <= ak <= ik < bk <= hk
0 <= ck <= jk < dk <= wk
(k™ suffix means we are talking about blocks, not pixels.)
Problems are considered in order of increasing size;
so that when a problem is done, all of its smaller
component problems have already been solved.
h = (len(pixels[0]), len(pixels))
= (h-1)//k + 1
= (w-1)//k + 1
for uk in range(l,hk+1):
for ak in range(0,hk-uk+1):
bk = ak + uk
for vk in range(l,wk+1):
for ck in range(0,wk-vk+1):
dk = ck + vk
one_part_subproblem(ak,bk,ck,dk)
for tt in range(2,t+1):
multipart_subproblem(ak, bk, ck,dk, tt)

def compute block stats(pixels,k):
Compute statistics for each kxk block in picture.
Stats are a 7-tuple:
n, rss, rs, gss,gs,bss,bs
where
n = number of pixels in block
(note blocks on right and bottom may be partial)
rss = red sum of squares of pixel values
rs = red sum of pixel values
gss = green sum of squares of pixel values
gs = green sum of pixel values
bss = blue sum of squares of pixel values
bs = blue sum of pixel values
Store stats in block stats.
global block_stats
w,h = (Ien(pixels[0]),len(pixels))
hk = (h-1)//k + 1
wk = (w-1)//k + 1
block _stats = {}
for i in range(h):
ik = 1//k
for j in range(w):
jk = J//k
if not block stats.has _key((ik,jk)):
block_stats[(ik,jk)] = (0,0,0,0,0,0,0)
r.g,b = pixels[i][jl]
n,rss,rs,gss,gs,bss,bs = block _stats[(ik,jk)]

n+=1

rss += r*r
rs += r
gss += g*g
gs += g
bss += b*b

bs += b

block_stats[(ik,jk)] = (n,rss,rs,gss,gs,bss,bs)

def generate_solution_parts(subproblem):

Return list that contains all one-part
solution parts for this subproblem, by
recursively unwinding solutions with more parts.
global subproblem_soln
ak,bk,ck,dk,t = subproblem
if t==1:

return list(subproblem_soln[subproblem])
else:

L=1

for soln_part in subproblem_soln[subproblem]:

L.extend(generate_solution_parts(soln_part))

return L

def main():

Demonstrate dynamic programming image compression.
global block_stats, subproblem value, subproblem soln
filename_list = [“eye",
"kilimanjaro",
"pumpkin',
"firetruck']
for f in filename list:
input_filename = f+"_jpg"
pixels = get_image(input_filename)
w,h = (Ien(pixels[0]),len(pixels))
try different k x k block sizes
for k in [256,128,64,32,16,8]:
if w//k > 50: continue
hk = (h-1)//k + 1
wk = (w-1)//k + 1
print "hk = ",hk,"wk = ",wk
compute_block_stats(pixels, k)
try different number t of parts wanted
for t in [10,20,30,40,50,60,70,80,90,100]:
if t>(hk*wk):
break
subproblem_value = {}
subproblem_soln = {}
generate_and_solve_subproblems(pixels,k,t)
pixels out = [[0]*w for i in range(h)]
for soln in generate_solution_parts((0,hk,0,wk,t)):
ak,bk,ck,dk,r,g,b = soln
for i1 in range(ak*k,min(bk*k,h)):
for j in range(ck*k,min(dk*k,w)):
pixels out[i][j] = (r,g,b)
output_filename = "%s_%03d_%03d. jpg"%(Ff,k,t)
save_image(pixels_out,output_filename)
print output_filename

Origi nal

10 rectangl es

100 rectangl es

Ori gi nal

10 rectangl es

100 rectangl es

