
Introduction to Algorithms: 6.006
Massachusetts Institute of Technology October 11, 2007
Professors Ron Rivest and Srini Devadas Handout 9

Problem Set 3
This problem set is due October 23 at 11:59PM.
Solutions should be turned in through the course website in PS or PDF form using LATEX or scanned
handwritten solutions, or they may be handwritten and turned in to a member of the 6.006 course
staff on or before the due date. Hand-drawn diagrams may also be referenced in your LATEX writeup
and turned in at the next day’s recitation.
A template for writing up solutions in LATEX is available on the course website.

Exercises are for extra practice and should not be turned in.
Exercises:

• Consider the amount of memory used in a dynamic programming approach to a problem.
Show, by means if illustration, that even though you do need to solve all subproblems and
save their solutions for later use, you might not need to save all of the these solutions simul-
taneously; the memory actually used might be less than the number of subproblems.

• Is there any significant difference between the following two approaches to dynamic pro-
gramming, in terms of their efficiency?

1. Solve all subproblems, in order of size, from smallest to largest.

2. Solve each problem and subproblem recursively, starting with the largest subproblem,
but saving (via memoization) previous solutions to a subproblem to avoid having to
solve it more than once.

Explain.

• Exercise 15.3-5 from CLRS.

1. Image Compression

In the image compression example in class, we divided up the image into k × k blocks and
found the “best” partition of the image into t non-overlapping monochrome rectangles, with
each rectangle a union of blocks. We used the sum of squares of differences between the
actual pixel values and the average pixel value in each region as a metric for deciding what
partition was “best”. Suppose that instead, our metric was the sum of squares of differences
between the actual pixel values and the median pixel value in a region.

(8 points) Explain why dynamic programming may not be a good approach to finding the
“best” partition of the image in this case.

2 Handout 9: Problem Set 3

2. Tris

In this problem, we consider a simplified version of Tetris. (If you are not familiar with this
game, ask a TA or look it up on Wikipedia.)

In this game, each piece is made from 3 squares, so it is either a “bar” (3 in a row) or an
“ell”. Rotations are not allowed, so there are 2 types of bars and 4 types of ells, accounting
for orientation.

Let us assume that the playing field is three squares wide and arbitrarily tall. The pieces fall
from top to bottom, one at a time, and can be shifted left and right but not rotated, until they
rest on the bottom of the playing field or a previously placed piece. Once a pieces “touches
down”, it can’t be moved further (e.g. horizontally). Lines are not cleared when they fill up.

Suppose you know ahead of time what the sequence of n pieces will be (bars or ells and their
orientations). How well can the pieces be packed into the bottom?

Give an algorithm to minimize the total height (height of the highest column) of the stack of
pieces, and among stacks with the the minimum height, to minimize the number of “holes”
(unfilled squares that are below any filled squares). That is, your algorithm returns the height
and the number of holes.

A: B:

For example, consider these ell pieces A and B. If we get two A pieces, the smallest height
is 3, with 1 hole; with 2 B pieces, we can get height 3 with 2 holes; with A followed by B,
height 2 with 0 holes; and with B followed by A, height 4 with 1 hole.

Hint: Consider the “state” of the the puzzle after k pieces have been placed as a triple
(a, b, c) where a + b + c = 3k + h, representing the height of the stack in columns 1, 2, and
3 respectively, where h is the number of holes.

(a) (12 points) Explain carefully how your algorithm works.

(b) (8 points) Show that your algorithm runs in time polynomial in n.

(c) Optional: Describe an algorithm to solve this problem when rotations are permitted,
and explain how the problem is different.

(d) Optional: Does your approach generalize to standard Tetris? What if filled lines in
Tetris no longer are cleared?

3. Winning the Stock Market

Suppose you started with $1000 on the day you were born. If you had perfect future knowl-
edge of daily stock prices, how much money could you have had on January 1, 2007, and
what trades would you have had to make to get there?

To put some limits on the open-ended nature of this question, we introduce a few restrictions:

Handout 9: Problem Set 3 3

• You may only trade the 30 stocks in the current Dow Jones Industrial Average. The
daily stock price data is available in the 6.006 locker on Athena in /mit/6.006/stocks/
or from http://courses.csail.mit.edu/6.006/fall07/data/stocks/.

• You may only buy and sell at the daily closing price (use the “adjusted close” column
in the data, which takes stock splits into account).

• You may only execute trades, in which you change some combination of cash and
stocks for a different combination of cash and stocks of an equal value, at most once
every 60 days.

• You are allowed to hold fractional numbers of shares. There is no upper bound on the
number of shares you can have.

• You may not short sell stocks.

• At the end, you must hold only cash (no stocks).

You may find the csv package useful for reading the comma-separated-values price data
files, and the date class from the datetime package useful for manipulating dates. csv
documentation is available from http://docs.python.org/lib/module-csv.html; for date, see
http://docs.python.org/lib/datetime-date.html.

An example usage of csv to read all the stock prices of IBM into a list L:

L = list(csv.reader(open("IBM.csv")))

An example of finding the number of days’ difference between two dates:

(datetime.date(2007,10,11) - datetime.date(2007,9,4)).days

(a) (4 points) Show that the optimal strategy is never to hold more than one kind of stock.
Note: For this part, it is important that you can hold fractional shares!

(b) (12 points) Let d be the total number of days with price data, n be the total number of
allowable stocks, and t the minimum number of days between trades. Give an efficient
dynamic programming algorithm and describe its running time in terms of d, n, and t.

(c) (2 points) How much money would you have had on January 1, 2007?

(d) (1 point) Suppose there is a 1% transaction fee associated with each trade. That is, if
you owned 100 shares of X, each worth $10, and the price of a share of Y were $5,
you could sell X and receive $990, or sell X and buy Y, receiving 198 shares of Y. How
much money would you have had on January 1, 2007?

(e) (1 point) Suppose there is a 10% transaction fee. How much money would you have
had on January 1, 2007?

(f) (2 points) What is the average yearly rate of return r on your initial investment for each
of the previous 3 parts? (1 + r)t should be the ratio of your final amount to your initial
investment, where t is the time between the day you were born and January 1, 2007 in
years (possibly fractional).

4 Handout 9: Problem Set 3

The items you should turn in are:

• (10 points) Your code, containing a function most money(fee), which returns the
amount of money you would have on January 1, 2007, starting with $1000 on the day
you were born, with fee = 0, 0.01, or 0.1 for each of the three cases. You can assume
that the .csv data files will be in the same directory from which your function will be
run.

• A file listing the optimal trades for each of the three cases: no transaction fee, 1%, and
10%.

