Ground states of strongly coupled quantum systems of light and matter

Nick Rivera

MIT Physics

(in collaboration with Dr. Johannes Flick and Prof. Prineha Narang at Harvard)

The "alchemy" of the quantum vacuum Modifying Chemical Landscapes by Coupling to Vacuum Fields** James A. Hutchison, Tal Schwartz, Cyriaque Genet, Eloïse Devaux, and Thomas W. Ebbesen*

"Quantum electrodynamical materials science"

Conductivity in Organic Semiconductors Hybridized with the Vacuum Field

E. Orgiu[†],¹ J. George[†],¹ J. A. Hutchison[†],¹ E. Devaux,¹ J. F. Dayen,² B. Doudin,² F. Stellacci,³
C. Genet,¹ J. Schachenmayer,⁴ C. Genes,⁵ G. Pupillo,^{1,2} P. Samorì,¹ and T. W. Ebbesen^{*1}

First principles approaches that capture both the quantum behavior of matter *and* light constitute a new field: *ab initio quantum electrodynamics*

Simple (but difficult to solve) conceptual example of the system at hand

• A molecule in an optical cavity (electron modes + photon modes)

De Bernardis, Jaako, Rabl. Physical Review A. (2018).

Overview of routines introduced in this code

- Methods:
 - Given some user-input electron + photon system, can for example:
 - Find response of electromagnetic field to external probe (time-harmonic dipole)
 - Find energy changes by the electrons induced by the photons
 - Find the behavior of the electron density and electromagnetic field in coupled system
 - All of these require solving a non-linear eigenproblem or non-linear equation
- Package dependencies
 - PyPlot, BenchmarkTools, LinearAlgebra, SparseArrays, Arpack, NLsolve

Results I: profile of the quantum vacuum field created by an atom

Results IIa: alteration of the density of electrons by quantum vacuum fields

Change in electronic ground state densities due to coupling

Results IIb: alteration of the density of electrons by quantum vacuum fields

Equations to be solved (an example)

• Simplest level of approximation which would be appropriate when the interaction between light and matter is strong

$$\left[\left(-\frac{1}{2} \nabla^2 + U(\mathbf{r}) \right) - q\mathbf{r} \cdot \langle \mathbf{E}(\mathbf{r}) \rangle \right] \psi(\mathbf{r}) = E\psi(\mathbf{r})$$
$$\langle \mathbf{E}(\mathbf{r}) \rangle = q \langle \mathbf{r} \rangle \sqrt{\frac{2}{\omega_n}} \sum_{n=1}^{N_p} \operatorname{Re} \, \mathbf{F}_n(\mathbf{r})$$

• This equation has a non-local cubic nonlinearity due to the term

$$\psi(\mathbf{r})\int d\mathbf{r}' \,\,\mathbf{r}' |\psi(\mathbf{r}')|^2$$

julia NLsolve package is a highly flexible method for solving fixed point problems

• Often good way to solve a non-linear equation: cast it into the form F(x) = x

$$u'' + au^3 = \lambda u$$

• At kth step: $u_k'' + a u_{k-1}^2 u_k = \lambda_k u_k$ is linear. Solved when

$$f(u_{k-1}) = \operatorname{eigs}(D^2 + au_{k-1}^2) \approx u_{k-1}$$

• NLsolve in julia provides a general framework for solving these problems.

```
fixedpoint(f, init_x; iterations = 500, ...)

can be an eigensolver (as in the code | wrote)
```

julia NLsolve package as a highly flexible method for solving fixed point problems

```
sol_el= fixedpoint(f_el_meanfield!, X0; method = :anderson, m=0,beta=1.0,iterations=20);
                                                                     m = 0: Picard iteration
                                                                     m != 0: Anderson
      function f el meanfield!(F,X)
          N = E.N;
                                                                     acceleration
          X = scf iter eigs meanfield(X,E,P,zeros(N,N),str);
         # print("$(X)")
          Nred = E.Nred;
         # print("$(real(X[end-Nred+1:end])) \n")
                                                                    eigensolver which takes
          for count = 1:size(X,1)
                                                                    photons, constructs effective
              F[count] = X[count];#X[end-N+count]
          end
                                                                    potential felt by electrons, and
                                                                    diagonalizes
      end
```

julia: easily exploit structure through types makes it easy to interface with other software and easy to write common code to different methods

struct electronic_r

N:::Int64 # spectral dimension

Nred::Int64 # spectral dimension of truncated hilbert space (i.e., number of eigenvecs retained in computations)
H0::Matrix # matter Hamiltonian
r::Matrix # position

X::Array

```
end
```

This struct below constructs the 'photon class', which refers to any kind of electromagnetic quanta essentially.

```
struct photonic
    N::Int64 # spectral dimension
    d::Int64 # polarization vector dimension
    freqs::Vector # frequencies of modes 1 to N
    modes::Array # photonic modes in absence of matter. rows are now components, columns are mode #
end
```

Gives opportunity to "feed in" results from generic quantum eigensolvers and Maxwell eigensolvers like MPB, COMSOL, etc.