
hector the investor

Plot(Strategies[], start_time, end time)

Draws

returnVolatility(timeframe, PortfolioState)

"Volatility"?
the standard deviation of a stock's past
returns

riskReward()

sharpe ratio?
the rate of return above the "risk-free
rate"/volatility
(r_p - r_f)/o_p

r_p = expected portfolio return
r_f = risk free rate
o_p = portfolio std dev

Portfolio.jl

Vars
Struct::Portfolio

liquid capital
float

holdings
ticker:share

Struct:: PortfolioState
currentPortfolio
startDate
currentDate

NOTE:
Figure out how to handle dividends

auto-reinvest
turn to capital

EvaluateValue()

return overall value of portfolio (i.e. ticker*share +
liquid capital)

Strategy.jl

struct Portfolio
rules

(i.e. if stock A < stock B for 8 time units: buy A)
AnonymousFunction:: Process_info (Portfolio, data_point)

buy(date, stock, amount_dollar)

trade some amount of liquid capital for the
corresponding amount of stock

sell(date, stock, amount_shares)

trade some amount of stock for the corresponding
amount of liquid capital

Simulator.jl

Historical_data
Array::Strategies[]

e.g. User generated, Baseline_strategy (S&P),
etc.

Timeframe

MarketDB.jl

Holds historical data in a time series
Use JuliaDB if 1.0 or convert to 0.6??
TimeSeries otherwise

query(date/time, exchange, stock)

returns the data associated with the ticker (denoted
by an exchange:stock pair) at the given time unit

validTicker(exchange, stock)

returns true if information exists in the database for
the given exchange:stock pair

Price at time

StockTicker.jl

Holds a struct with exchange and symbol
on initialization, checks that the ticker exists in the
database at the given time
start date is when teh company became public,
end_date (when applicable) is when the company
went off the market

stockTicker(exchange, symbol, start_date, end_date)

returns the data associated with the ticker (denoted
by an exchange:stock pair) at the given time unit
start

PortfolioDB.jl

Holds the states of the portfolio over the run of the
simulation

write(date/time, PortfolioState, riskReward, Volatility, Value)

writes an immutable data point to the database for use
with visualization/data analysis

query(date/time)

returns the Portfolio information associated with the
given date/time

