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Big data modern approach
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The traditional way is slow

* Many complicated systems are hard to derive from
first principles

* The rate of data generation faster than analysis

Equations provide insights

* Machine learning provides weights
e Hard for a human to interpret
* Relation to existing models?



Dynamics of the four main gap gene
expression profiles — Drosophila
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Dubuis JO, Samanta R, Gregor T (2013) Accurate measurements of dynamics and reproducibility in small genetic networks. Molecular
Systems Biology 9: 639.



Where do these ideas intersect

* Use data to “derive” equations
* Clearer links to established theory

* Increased speed of analysis and prediction



The big idea — library of possible terms
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II. Sparse Regression to Solve for Active Terms in the Dynamics

S. Brunton, J. Proctor and J. N. Kutz, Discovering governing equations from data: sparse identification of nonlinear dynamical systems arXiv:1509.03580



Sparsity triumphs
* In most physical models only have a few coefficients

* Add a penalty term for number of coefficients
§ = argming||©& — Uy||3 + A[[€][2

* Different penalty terms — varying stability



Challenges

e Data has noise
* Derivatives amplify noise
e Algorithm is sensitive

e Often a limited amount of data

 Some codes exist but are scattered
* MATLAB
* Python
e Convoluted to use



Noisy derivatives

* ApproxFun
* Evenly spaced data — not supported
* Expansions are smooth
e Derivatives efficient to compute
» Coefficient thresholding can smooth

* \Wavelets
e Over determined more robustness
* Smooth function -> Finite Difference



With noise — carefully selected parameters
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Timings compared to MATLAB

Making Library
Regressing Dynamics
Reading Coefficients

Total

6.309 seconds
0.362 seconds
0.012 seconds
6.683 seconds

~ 5x speed up in Julia

0.495292 seconds
0.771896 seconds
0.000128 seconds
1.267 seconds



Conclusions

 Computers can be used to help in discovery of dynamical systems
* More robustness is needed to noise

e Julia provides significant speed up over MATLAB for these problems
* Broadcasting allows for concise code
* Multiple dispatch and typing
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