

18.337 - HW #3
Written by Ilker Kesen, Deniz Yuret., Fall 2018

In this exercise, you are going to preprocess the Boston Housing Dataset, and

then use it to train a linear regression model. Please submit your solution as

a IJulia notebook.

The housing dataset has housing related information for 506 neighborhoods in

Boston from 1978. Each neighborhood is represented using 13 attributes such as

crime rate or distance to employment centers. The goal is to predict the

median value of the houses given in $1000's.

EXERCISE 0

In order to use some necessary functions, we need to import some modules. Just

insert the following line as first line or cell,

using​ DelimitedFiles​,​ Statistics​,​ Random

Statistics​ contains statistical procedures like ​mean​ and ​std​, ​DelimitedFiles

contains our data read procedure functions (​readdlm​) and Random is for random

numbers (​rand​, ​Random.seed!​ etc.).

EXERCISE 1

First download, and then read the data file. Here’s the ​link​ to the dataset.

You need to download the data within your IJulia notebook (please have a look

at the ​readdlm​, ​download​ functions of Julia). If you look at the data, you see

that each house is represented with 13 attributes separated by whitespaces and

there are 506 lines in total.

https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data

EXERCISE 2

The resulting data matrix should have 506 rows representing neighborhoods and

14 columns representing the attributes. The last attribute is the median house

price to be predicted, so let’s separate it. Also, take transpose of this data

matrix so instances/samples are in columns. We will use Julia’s array indexing

operation to split the data array into input x and output y. (Hint: you may

want to reshape y array into a matrix with size 1x506, use ​reshape​ procedure

for this purpose)

EXERCISE 3

As you can see, input attributes have different ranges. We need to normalize

attributes by subtracting their mean and then dividing by their standard

deviation (hint: take means and standard deviations of row vectors). The mean

and std functions calculate mean and standard deviation values of x. Calculate

mean and standard deviation values. Perform normalization on input data.

Important Note on Random Number Generation

Before generating random numbers, strings etc., you need to set a seed,

because Julia uses a pseudo random number generator. In pseudo random number

generators you set a seed and you obtain some certain random number generation

order based on that seed. If you don’t set a seed, the results you obtain in

the next exercises will be different. When you fail in some part, run the

cells again starting from the cell or line you set random seed.

EXERCISE 4

It is necessary to split our dataset into training and test subsets so we can

estimate how good our model will perform on unseen data. There are 506

instances in our dataset. Let’s take 400 of them randomly, use them as

training data. Let the rest be test data. In the end, you will have 4

different arrays: xtrn, ytrn, xtst and ytst.

Use ​randperm​ function to split our dataset into train and test sets. Note

that, results will differ since usage of ​randperm​ function introduces

randomness. If you want to produce reproducible results, set a seed by using

Random.seed!​ function. In this exercise, please set seed as 1 just before

randperm​ call and you will get exactly the same results as below. Use ​@doc

macro to see documentation about ​randperm​ and ​Random.seed!​ (e.g. type ​@doc

randperm​ to Julia REPL or notebook).

You can see the results of the split operation below.

EXERCISE 5

Our data is ready to be used. First, let’s look at how good a randomly

initialized linear regression model performs on our processed data.

Basically, we need to use some weights with whom we’re going to multiply the

attributes of houses and add a bias so that we can predict the price of that

house. Neighborhoods are represented with 13 attributes and we need to predict

the prices which is a single number. We need to have a weight matrix with size

1x13. We also use a bias value which is 0.

To create weight matrix, we will sample from normal distribution with zero

mean and a small standard deviation. In this tutorial, our standard deviation

value is equal to 0.1. Use randn function to create a random weight matrix

whose values are sampled from a unit normal distribution (mean=0, standard

deviation=1). Multiply our weight matrix by 0.1 which is our desired standard

deviation. Set the bias to 0.

EXERCISE 6

Now, we have input and weights. Let’s write a function to predict price.

Implement a function takes the weight matrix and neighborhood attributes as

input and outputs a single value, house price prediction. Simply perform a

matrix multiplication inside this function add the bias and return the output

vector. We call this function the ​predict​ function.

Call the predict function and store the output as ​ypred​.

ypred is an 1x400 dimensional array. Each value in this array is the model’s

price prediction for an average house in corresponding neighborhood.

EXERCISE 7

Let’s implement a loss function called the Mean Squared Error (MSE),

 J = 1
2N ∑

N

i=1
(y)i − yi

︿ 2

In this function we calculate J, our loss value, half the average of squared

difference between real price values and predicted price values.

Implement MSE loss function which takes the model parameters, input matrix

(xtrn or xtst) and ground truth prices (ytrn or ytst). Helpful functions: sum,

mean, size, abs2, .* You don’t have to use all of them. Use the dot notation

for broadcasting e.g. ​abs2.(x)​. Calculate the loss value for both train and

test splits by using your MSE loss function.

(train loss/test loss): (297.3036503276774,299.0172855668773)

EXERCISE 8

Let’s find in how many of the neighborhoods, the randomly initialized model

predicts the price with an error less than the average error. Measure the

absolute difference between the predicted price and correct price for each

neighborhood and compare those differences with the square root of the loss

value calculated in previous exercise. Use sqrt function (with dot syntax,

e.g. ​sqrt.(x)​) to take square roots. Perform this step for only training set.

The result should be ​108​.

EXERCISE 9

Write an SGD training loop using AutoGrad utilities. Train your model. Start

with a learning rate of 0.1 and optimize it for fast convergence (note that

SGD may diverge if you set the learning rate too high). You should be able to

get a test loss less than 8.5 within 50 epochs. Here is a summary of AutoGrad

usage (see `@doc AutoGrad` for more details):

x = Param([1,2,3]) # user declares parameters
x => P([1,2,3]) # they are wrapped in a struct
value(x) => [1,2,3] # we can get the original value
sum(abs2,x) => 14 # they act like regular values outside of diff
y = @diff sum(abs2,x) # if you want the gradients
y => T(14) # you get another struct
value(y) => 14 # which represents the same value
grad(y,x) => [2,4,6] # but also contains gradients for all Params

Sample run:
epoch=0 trnloss=297.3036503276774 tstloss=299.0172855668773
epoch=1 trnloss=151.46737772662826 tstloss=140.62408482836196
epoch=2 trnloss=81.33677873335634 tstloss=82.63525728938849
. . .
epoch=49 trnloss=11.72306660031736 tstloss=8.428948061703453
epoch=50 trnloss=11.720071050577763 tstloss=8.42861947294791

