
 

18.337 - HW #3 
Written by Ilker Kesen, Deniz Yuret., Fall 2018 

In this exercise, you are going to preprocess the Boston Housing Dataset, and 

then use it to train a linear regression model. Please submit your solution as 

a IJulia notebook. 

The housing dataset has housing related information for 506 neighborhoods in 

Boston from 1978. Each neighborhood is represented using 13 attributes such as 

crime rate or distance to employment centers. The goal is to predict the 

median value of the houses given in $1000's. 

EXERCISE 0 

In order to use some necessary functions, we need to import some modules. Just 

insert the following line as first line or cell, 

using​ DelimitedFiles​,​ Statistics​,​ Random 

Statistics​ contains statistical procedures like ​mean​ and ​std​, ​DelimitedFiles 

contains our data read procedure functions (​readdlm​) and Random is for random 

numbers (​rand​, ​Random.seed!​ etc.). 

EXERCISE 1 

First download, and then read the data file. Here’s the ​link​ to the dataset. 

You need to download the data within your IJulia notebook (please have a look 

at the ​readdlm​, ​download​ functions of Julia). If you look at the data, you see 

that each house is represented with 13 attributes separated by whitespaces and 

there are 506 lines in total.  

https://archive.ics.uci.edu/ml/machine-learning-databases/housing/housing.data


 

 

EXERCISE 2 

The resulting data matrix should have 506 rows representing neighborhoods and 

14 columns representing the attributes. The last attribute is the median house 

price to be predicted, so let’s separate it. Also, take transpose of this data 

matrix so instances/samples are in columns. We will use Julia’s array indexing 

operation to split the data array into input x and output y. (Hint: you may 

want to reshape y array into a matrix with size 1x506, use ​reshape​ procedure 

for this purpose) 

 



 

 

EXERCISE 3 

As you can see, input attributes have different ranges. We need to normalize 

attributes by subtracting their mean and then dividing by their standard 

deviation (hint: take means and standard deviations of row vectors). The mean 

and std functions calculate mean and standard deviation values of x. Calculate 

mean and standard deviation values. Perform normalization on input data. 

 

Important Note on Random Number Generation 

Before generating random numbers, strings etc., you need to set a seed, 

because Julia uses a pseudo random number generator. In pseudo random number 

generators you set a seed and you obtain some certain random number generation 

order based on that seed. If you don’t set a seed, the results you obtain in 

the next exercises will be different. When you fail in some part, run the 

cells again starting from the cell or line you set random seed.  

EXERCISE 4 

It is necessary to split our dataset into training and test subsets so we can 

estimate how good our model will perform on unseen data. There are 506 



 

instances in our dataset. Let’s take 400 of them randomly, use them as 

training data. Let the rest be test data. In the end, you will have 4 

different arrays: xtrn, ytrn, xtst and ytst. 

Use ​randperm​ function to split our dataset into train and test sets. Note 

that, results will differ since usage of ​randperm​ function introduces 

randomness. If you want to produce reproducible results, set a seed by using 

Random.seed!​ function. In this exercise, please set seed as 1 just before 

randperm​ call and you will get exactly the same results as below. Use ​@doc 

macro to see documentation about ​randperm​ and ​Random.seed!​ (e.g. type ​@doc 

randperm​ to Julia REPL or notebook). 

You can see the results of the split operation below. 

 

 



 

 

 

 

EXERCISE 5 

Our data is ready to be used. First, let’s look at how good a randomly 

initialized linear regression model performs on our processed data. 

Basically, we need to use some weights with whom we’re going to multiply the 

attributes of houses and add a bias so that we can predict the price of that 

house. Neighborhoods are represented with 13 attributes and we need to predict 

the prices which is a single number. We need to have a weight matrix with size 

1x13. We also use a bias value which is 0. 

To create weight matrix, we will sample from normal distribution with zero 

mean and a small standard deviation. In this tutorial, our standard deviation 

value is equal to 0.1. Use randn function to create a random weight matrix 

whose values are sampled from a unit normal distribution (mean=0, standard 

deviation=1). Multiply our weight matrix by 0.1 which is our desired standard 

deviation. Set the bias to 0. 



 

 

EXERCISE 6 

Now, we have input and weights. Let’s write a function to predict price. 

Implement a function takes the weight matrix and neighborhood attributes as 

input and outputs a single value, house price prediction. Simply perform a 

matrix multiplication inside this function add the bias and return the output 

vector. We call this function the ​predict​ function. 

Call the predict function and store the output as ​ypred​. 

 

ypred is an 1x400 dimensional array. Each value in this array is the model’s 

price prediction for an average house in corresponding neighborhood. 

EXERCISE 7 

Let’s implement a loss function called the Mean Squared Error (MSE), 

  J =  1
2N ∑

N

i=1
(y  )i − yi

︿ 2  

In this function we calculate J, our loss value, half the average of squared 

difference between real price values and predicted price values. 

Implement MSE loss function which takes the model parameters, input matrix 

(xtrn or xtst) and ground truth prices (ytrn or ytst). Helpful functions: sum, 

mean, size, abs2, .* You don’t have to use all of them. Use the dot notation 



 

for broadcasting e.g. ​abs2.(x)​. Calculate the loss value for both train and 

test splits by using your MSE loss function. 

(train loss/test loss): (297.3036503276774,299.0172855668773) 

EXERCISE 8 

Let’s find in how many of the neighborhoods, the randomly initialized model 

predicts the price with an error less than the average error. Measure the 

absolute difference between the predicted price and correct price for each 

neighborhood and compare those differences with the square root of the loss 

value calculated in previous exercise. Use sqrt function (with dot syntax, 

e.g. ​sqrt.(x)​) to take square roots. Perform this step for only training set. 

The result should be ​108​. 

EXERCISE 9 

Write an SGD training loop using AutoGrad utilities. Train your model. Start 

with a learning rate of 0.1 and optimize it for fast convergence (note that 

SGD may diverge if you set the learning rate too high). You should be able to 

get a test loss less than 8.5 within 50 epochs.  Here is a summary of AutoGrad 

usage (see `@doc AutoGrad` for more details): 

 

x = Param([1,2,3])          # user declares parameters 
x => P([1,2,3])             # they are wrapped in a struct 
value(x) => [1,2,3]         # we can get the original value 
sum(abs2,x) => 14           # they act like regular values outside of diff 
y = @diff sum(abs2,x)       # if you want the gradients 
y => T(14)                  # you get another struct 
value(y) => 14              # which represents the same value 
grad(y,x) => [2,4,6]        # but also contains gradients for all Params 
 
Sample run: 
epoch=0 trnloss=297.3036503276774 tstloss=299.0172855668773 
epoch=1 trnloss=151.46737772662826 tstloss=140.62408482836196 
epoch=2 trnloss=81.33677873335634 tstloss=82.63525728938849 
. . .  
epoch=49 trnloss=11.72306660031736 tstloss=8.428948061703453 
epoch=50 trnloss=11.720071050577763 tstloss=8.42861947294791 
 

 


