Never miss a bus again with this one crazy trick

Cooper Sloan

Background

Undergrad: MIT, BS in Computer Science
Masters: MIT, MEng in Artificial Intelligence

Overview

 \Box Problem

□ Risks/Challenges

□ Implementation

□ Final Design

□ Takeaways

Problem

- Bus schedules are unreliable
- Complicated interactions
- Deep learning may have the answer

Problem cont.

Challenge 1: Feature Selection

- Clumping
- Dwell Time
- Travel Time
- Schedule Adherence
- Temporal Features

Challenge 2: Noisy/Incomplete Data

- Urban Valleys
- 1: Naive Approach
- 2: Interpolation

Challenge 3: Model Design

- Train/test split
- Data partitioning
- Routes
- Architecture
- Evaluation

Iteration

- Overfitting
- Signal to noise
- Temporal data

Architecture

Travel time from stop 1 to 2 H D Travel time from stop 2 to 3 D E N ٠ . Travel time from stop i to i+1 A Y . E R . . Travel time from stop n-1 to n

Results

Comparison

- Knet

- Pytorch
- Imperative
- Easy Debugging
- More expressiveness
- Mocha
 - Tensorflow/Keras
 - Declarative
 - Easy to write (usually...)
 - Hard Debugging
 - Good for simple models
 - Less expressive

Summary

- Predict bus arrival times using neural networks
- GPS data from MBTA
- Use travel time between stops as features
- 3 hidden layers + RNN