Never miss a bus again with this one crazy trick

Cooper Sloan

Background

- Undergrad: MIT, BS in Computer Science
- Masters: MIT, MEng in Artificial Intelligence

Overview

\square Problem
\square Risks/Challenges
\square Implementation
\square Final Design
\square Takeaways

Problem

- Bus schedules are unreliable
- Complicated interactions
- Deep learning may have the answer

Problem cont.

Challenge 1: Feature Selection

- Clumping
- Dwell Time
- Travel Time
- Schedule Adherence
- Temporal Features

Challenge 2: Noisy/Incomplete Data

- Urban Valleys
- 1: Naive Approach
- 2: Interpolation

Challenge 3: Model Design

- Train/test split
- Data partitioning
- Routes
- Architecture
- Evaluation

Iteration

- Overfitting
- Signal to noise
- Temporal data

Architecture

Travel time from stop 1 to 2

Travel time from stop 2 to 3

Travel time from stop i to i+1

Travel time from stop n -1 to n

Prediction for travel time from stop n to stop $\mathrm{n}+\mathrm{k}$

Results

Comparison

- Knet
- Pytorch
- Imperative
- Easy Debugging
- More expressiveness
- Mocha
- Tensorflow/Keras
- Declarative
- Easy to write (usually...)
- Hard Debugging
- Good for simple models
- Less expressive

Summary

- Predict bus arrival times using
neural networks
- GPS data from MBTA
- Use travel time between stops as features
- 3 hidden layers + RNN

