
JULIA IMAGE 
COLORIZATION USING KNET
Jeffrey Lu and Kevin Liu

6.338/18.337 Fall 2017



MOTIVATION

• Image colorization for 6.869 Computer Vision (Jeffrey)

• Cool application of deep learning

• Restoring old black and white photos

• Abstract experiment: no “right” answer

• Experiment with deep learning in Knet and Julia

• Test ease of using Julia/Knet on AWS GPU

• Based off Zhang et. al.’s image colorization paper

https://arxiv.org/pdf/1603.08511.pdf


GOALS

• Given input black and white image

• Generate plausible color version

• Two possible methods

• Supervised vs. unsupervised colorization

• Be able to colorize any input image of 
correct dimension



APPROACH

• Typically images represented in RGB

• Will use Lab color space

• Only need to predict two values a and b, 
not 3

• L channel gives lightness, same as 
grayscale value of input, no need to 
predict

• Discretize Lab space to 18 by 18 buckets 
of (a,b) combinations

• Colors.jl to convert RGB to Lab



APPROACH (CONT.)

• Bucket each pixel in ground truth into ab bins

• Feed in L channel image as input to network

• Predict probability distribution of ab bins of each pixel

• Measure loss between ground truth and ab predictions

• Colorize image using highest probability ab bin for each pixel



DATASET

• Miniplaces dataset

• 100k images

• Covers over 100 scenes

• 128 by 128 images

• Each image labelled with scene category

• Can be used to improve network

• Subset of Places2 dataset from MIT CSAIL Computer Vision group

https://github.com/CSAILVision/miniplaces
http://places2.csail.mit.edu/


NETWORK ARCHITECTURE

• 22 convolutional layers separated into 8 groups

• ReLU activation

• Downsampling with stride 2 for dimension reduction

• Upsampling at end to recover dimensions

• Randomly initialized parameters and biases



CLASS REBALANCING

• Distribution of ab buckets in images is very skewed

• If unadjusted, loss will be dominated by these buckets

• Loss of each pixel weighted by −log(𝑝𝑎𝑖,𝑏𝑗)

• 𝑝 is proportion of total pixels in training set that lie in ab 
bucket (𝑖, 𝑗)



LOSS FUNCTION

• Single image loss

𝐿𝑜𝑠𝑠 ෠𝑌, 𝑌 = −෍

ℎ,𝑤

− log 𝑝𝑎𝑖,𝑏𝑗 ⋅ ෠𝑌ℎ,𝑤,𝑎𝑖,𝑏𝑗

where (𝑖, 𝑗) is true ab bin for pixel

• Loss of minibatch is sum of losses of images in batch

• Use loss to backpropagate and update weights of network



CHALLENGES

• Training on GPU instance

• For speed, loss calculation needs to be vectorized

• Problems with Knet and Autograd on GPU

• Size of training set – 100,000 images of size 128x128

• Cannot fit in RAM

• Number of parameters in model

• Long training time

• No visualization during training like Tensorboard


