
Solving ODE by artificial neural networks
with Knet.jl and Optim.jl

Jiawei Zhuang
(jiaweizhuang@g.harvard.edu)

2017 Fall

Contents
1 Introduction 1

2 Mathematical theory 2
2.1 Fitting functions by artificial neural networks 2
2.2 Solving a single ODE by artificial neural networks 2
2.3 Solving ODE systems by artificial neural networks 3

3 Implementation in Julia 4
3.1 Design idea . 4
3.2 Technical challenges . 4

3.2.1 Vectorizing autograd . 4
3.2.2 Use second-order optimization . 5

3.3 Neural-solver API . 5

4 Results and discussions 5

5 Conclusions and suggestions 7
5.1 Advantages and limitations of neural network method 7
5.2 Suggestions for package interoperability in Julia 8

1 Introduction
Ordinary differential equations (ODEs) are generally solved by finite-differencing methods,
from the simplest forward Euler scheme to higher-order schemes like the Runge-Kutta meth-
ods. Numerical solutions obtained by those schemes are typically stored in a discretized
form, i.e. in an array of floating point numbers.

The artificial neural network (ANN) method [2] provides a way to obtain ODE solutions
in a closed analytical form. The solutions are stored as neural network parameters, which

1

requires much less memory than storing the solution as a discretized array. Also, because the
solution is analytically differentiable, it can be superior in some applications like sensitivity
analysis.

2 Mathematical theory

2.1 Fitting functions by artificial neural networks

The universal approximation theorem [1] states that any continuous function can be ap-
proximated by a feed-forward neural network with a single hidden layer. This ANN can be
written in a matrix multiplication form:

N(x;w) = W2σ(W1x+ b1) + b2 (1)

where W1 and W2 are weight matrices and b1 and b2 are bias terms. σ is a nonlinear activa-
tion function such as tanh. We use w to represent all parameters [W1, W2, b1, b2].

To fit a scalar function y(x), the neural network takes a scalar input x and returns a scalar
output N(x). In this case, W1 and W2 degrade to row and column vectors.

The optimal parameters w can be found by minimizing the loss function

L(w) =

∫ b

a

[y(x)−N(x;w)]2dx (2)

In practice, the integral is approximated by a summation

L(w) =
∑
i

[y(xi)−N(xi;w)]
2 (3)

where {xi} is a set of training points covering the domain [a, b].

If the loss is small enough, then the ANN can be considered as a good approximation to the
original function over the domain [a, b]:

N(x;w) ≈ y(x) (4)

2.2 Solving a single ODE by artificial neural networks

Now we consider constructing an ANN that can approximate the solution to the first-order
ODE:

y′(t) = F (y(t), t), y(t0) = y0 (5)

If we use a standard neural network

N(t;w) = W2σ(W1t+ b1) + b2 (6)

2

It will not satisfy the initial condition, i.e. typically N(t0;w) 6= y0. But we can force the
initial condition by rewriting the ANN solution as

ŷ(t;w) = y0 + (t− t0)N(t;w) (7)

For any parameters w, there will always be ŷ(t0;w) = y0. We further require this ANN
solution ŷ(t;w) to satisfy the ODE:

ŷ′(t;w) ≈ F (ŷ(t;w), t) (8)

Note that the derivative ŷ′(t;w) can be derived analytically without any finite-difference
approximation

ŷ′(t;w) =
∂[y0 + (t− t0)N(t;w)]

∂t
=
∂(t− t0)

∂t
N(t;w) + (t− t0)

∂N(t;w)

∂t
(9)

The optimal parameters can be found by minimizing the cost function

L(w) =

∫ t1

t0

[ŷ′(t;w)− F (ŷ(t;w), t)]2dt (10)

Or in practice,
L(w) ≈

∑
i

[ŷ′(ti;w)− F (ŷ(ti;w), ti)]2 (11)

where {ti} is a set of training points covering the domain [t0, t1].

If the loss is small enough, then the ANN solution should be able to approximate the true
ODE solution over the domain [t0, t1]:

ŷ(t;w) ≈ y(t) (12)

2.3 Solving ODE systems by artificial neural networks

The above ANN method can be directly generalize to a system of ODEs. For simplicity,
consider a system of two ODEs

y′(t) = F1(y(t), z(t), t), y(t0) = y0 (13)
z′(t) = F2(y(t), z(t), t), z(t0) = z0 (14)

We can use two separates ANNs for two variables y and z

ŷ(t;w) = y0 + (t− t0)N1(t;w1) (15)
ẑ(t;w) = z0 + (t− t0)N2(t;w2) (16)

Then loss function is the sum of losses for two ODEs

L(w1, w2) ≈
∑
i

[
[ŷ′(ti)− F1(ŷ(ti), ẑ(ti), ti)]

2 + [ẑ′(ti)− F2(ŷ(ti), ẑ(ti), ti)]
2
]

(17)

3

3 Implementation in Julia

3.1 Design idea

To implement this neural network solver, we combine Optim.jl[6] and Knet.jl[3] (more specif-
ically, its AutoGrad part[5]). Unlike implementing normal ANNs with Knet, here we only
use Knet to compute ∂ŷ′(ti)/∂t, but use Optim.jl for ANN training. The reason is explained
in the “Use second-order optimization" section below.

We use standard ODE solvers in DifferentialEquations.jl[4] to benchmark our ANN solution.

3.2 Technical challenges

3.2.1 Vectorizing autograd

Unlike in ordinary ANNs where we only need the gradient of the loss L(w) w.r.t weights w, in
this ODE-ANN theory we need to take derivative w.r.t.to the input variable t, as suggested
by Eq. (9). This derivative was hand-coded in the original paper [2], but here we would like
to utilize the automatic differentiation in Julia.

However, a challenge is both AutoGrad.jl[5] and ForwardDiiff.jl[7] assume scalar-valued func-
tions, but our ANN prediction function is vectorized over the input parameter x:
function predict(params, x; act=tanh)

W1, b1, W2, b2 = params
a = act.(W1*x .+ b1)
y = W2*a .+ b2
return y

end

There are two ways to vectorize its gradient over x. One is to assume x is a scalar and
use "dot" to vectorize over an array. Another is to take gradient w.r.t to the scalar ysum =
y1 + y2 + ... + yn, where yi is the vectorized output from input xi. Each component of the
gradient would be

∂ysum
∂xi

=
∂yi
∂xi

(18)

since yi only depends on xi, not on xj (j 6= i).

The code is implemented as
sum_predict(x) = sum(predict(params, x))
predict_grad = grad(sum_predict)

We found the second method (gradient-of-sum) is 10 times faster than the first method
("dot" vectorize). See prototype/benchmark_NNpredict.ipynb for the timing com-
parison. The gradient-of-sum method is also how the Python version of Autograd [8] vec-
torize over input parameters. This functionality is not in Knet yet, and having this as a
convenient function might be helpful.

4

3.2.2 Use second-order optimization

This ODE-ANN theory was already implemented in the experimental NeuralNetDiffEq.jl
[9], but that implement was clearly not working, according to the results they have shown.
The problem is NeuralNetDiffEq.jl uses stochastic gradient descent (SGD) methods in Knet.
Althouth SGD methods and its variants like the Adam method are widely used in deep
learning [10], they are not suited for fitting smooth functions or approximate ODE solutions.
SGD methods are only able to get near the minimum, but to land exactly at the minimum
we need second-order optimization like the BFGS method [11]. This is illustrated in more
details in the numerical results section.

Knet doesn’t have second-order optimization methods, so we need to resort to Optim.jl.
An annoying thing here is Optim.jl expects the input parameter to be an 1-D vector, but
the neural network parameters [W1, W2, b1, b2] are typically nested arrays. The nesting gets
deeper for ODE systems where we need multiple ANNs and thus many groups of parameters.

This parameter shape problem is an existing issue [12] in Optim.jl and there are tools being
developed to address it [13]. But at this stage I have to hand-code the functions to flatten
(for Optim.jl) and unflatten (for prediction) ANN parameters. The functions are imple-
mented in NN_util.jl. The overhead of flatten&unflatten should be minimal as shown by
prototype/benchmark_NNpredict.ipynb, but this solution is by-no-means elegant and
doesn’t generalize well. A much better solution in the future would be allowing Optim.jl to
take nested arrays of any shapes.

3.3 Neural-solver API

Finally, I built an API (see NN_solver.jl and Use_API.ipynb) similar to DifferentialE-
quations.jl, which is able to solve general ODE systems.

The core computation part is not large, but there are many boilerplate codes to track the
shapes of ANN weights for flatten&unflatten operations. The API internal could be much
clearer and better optimized if Knet has second-order optimization methods or if Optim.jl
can take arbitrary shapes.

4 Results and discussions
Our API is able to solve general ODE systems, but in this report we focus on a single
problem: the Lotka-Volterra problem that the original NeuralNetDiffEq.jl [9] totally failed
to solve. The ODE is defined as

y′1(t) = 1.5y1 − y1 ∗ y2, y1(0) = 1 (19)
y′2(t) = −3y2 + y1 ∗ y2, y2(0) = 1 (20)

The training process is shown Fig.1. The solid lines are the reference solution given by
DifferentialEquations.jl, and the dotted lines show the neural network prediction during the

5

training process, with the BFGS optimizer. We can see the loss drops from 400 to 10−4

and the ANN prediction is converging to the reference solution. The initial guess is only
correct at the initial point (t = 0) as forced by Eq. (9), but is incorrect elsewhere. After
1000 training steps, the final prediction is visually indistinguishable from the reference “true"
solution. Animation for the entire training process is available as an MP4 file BFGS.mp4.

(a) initial guess (b) train for 50 steps

(c) train for 100 steps (d) final result (1000 steps)

Figure 1: Training with BFGS

Then we demonstrate in Fig.2 how this ANN method fails with first-order optimizers like
the basic Gradient Descend. The loss drops from 400 to 10−1 quickly but cannot decrease
further. Animation for the entire training process is available as an MP4 file GD.mp4.

Although such a magnitude of loss might be small enough for regression or classification
problems, it is not enough for accurately fitting a smooth function at every point. First-
order methods are only able to get near the minimum, but to land exactly at the minimum
we need second-order methods. This explains why NeuralNetDiffEq.jl [9] with the Adam
optimizer (SGD with momentum and adaptive learning rate) cannot solve this problem.

6

(a) initial guess (b) train for 50 steps

(c) train for 100 steps (d) final result (1000 steps)

Figure 2: Training with Gradient Descend (GD)

Codes for this section are in train_Lotka_Volterra.ipynb and Plot_Lotka_Volterra.ipynb.

5 Conclusions and suggestions

5.1 Advantages and limitations of neural network method

We have developed a neural network ODE solver with Knet.jl and Optim.jl. The solution is
analytically differentiable and requires less storage than traditional finite-differencing meth-
ods.

However, a major limitation of this method is it cannot deal with large t. Although our
method is successful in solving the Lotka-Volterra for t ∈ [0, 5], it usually fails for t ∈ [0, 20]
or larger. The major reason is ANNs are scale-aware – the input data often need to be scaled
to [-1,1], but there is no easy way to scale an ODE problem. Only scaling t will increase the
gradient dy/dt, making the function oscillating more drastically and harder to fit.

7

5.2 Suggestions for package interoperability in Julia

This project suggests that Optim.jl might be quite useful for deep learning. Besides in our
use case, the BFGS method is also useful in more standard deep learning applications like
style transfer [14].

Second-order methods (e.g. BFGS, L-BFGS, Conjugate Gradient) are not very well sup-
ported in current deep learning frameworks, because they are harder to code than first-order
methods (e.g. SGD, Adam):

• Tensorflow’s second-order optimizer (L-BFGS) is a wrapper around scipy, which is
again a wrapper around the Fortran minpack;

• Pytorch’s L-BFGS optimizer is ported from Lua torch and has an API different from
other methods;

• MXNet does not have second-order methods at all;

• Julia machine learning packages such as Knet.jl and Flux.jl [15] also do not have second-
order methods at all. But fortunately we are inside Julia framework so we can resort
to Optim.jl

One remained problem, though, is Optim.jl cannot run on GPUs. If GPU libraries can
interoperate with native Julia libraries like Optim.jl, they will open a lot of new opportunities.

References
[1] Hornik, Kurt, Maxwell Stinchcombe, and Halbert White. "Multilayer feedforward net-

works are universal approximators." Neural networks 2.5 (1989): 359-366.

[2] Lagaris, Isaac E., Aristidis Likas, and Dimitrios I. Fotiadis. "Artificial neural networks
for solving ordinary and partial differential equations." IEEE Transactions on Neural
Networks 9.5 (1998): 987-1000.

[3] Yuret, Deniz. "Knet: beginning deep learning with 100 lines of julia." Machine Learning
Systems Workshop at NIPS. Vol. 2016. 2016.

[4] Rackauckas, Christopher, and Qing Nie. "DifferentialEquations. jl A Performant and
Feature-Rich Ecosystem for Solving Differential Equations in Julia." Journal of Open
Research Software 5.1 (2017).

[5] https://github.com/denizyuret/AutoGrad.jl

[6] https://github.com/JuliaNLSolvers/Optim.jl

[7] https://github.com/JuliaDiff/ForwardDiff.jl

[8] https://github.com/HIPS/autograd

8

[9] https://julialang.org/blog/2017/10/gsoc-NeuralNetDiffEq

[10] Ruder, Sebastian. "An overview of gradient descent optimization algorithms." arXiv
preprint arXiv:1609.04747 (2016).

[11] Fletcher, Roger. Practical methods of optimization. John Wiley & Sons, 2013.

[12] https://github.com/JuliaNLSolvers/Optim.jl/issues/399

[13] https://github.com/JuliaDiffEq/RecursiveArrayTools.jl

[14] https://blog.slavv.com/picking-an-optimizer-for-style-transfer-86e7b8cba84b

[15] https://github.com/FluxML/Flux.jl

9

	Introduction
	Mathematical theory
	Fitting functions by artificial neural networks
	Solving a single ODE by artificial neural networks
	Solving ODE systems by artificial neural networks

	Implementation in Julia
	Design idea
	Technical challenges
	Vectorizing autograd
	Use second-order optimization

	Neural-solver API

	Results and discussions
	Conclusions and suggestions
	Advantages and limitations of neural network method
	Suggestions for package interoperability in Julia

