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I. Project Overview 

 

This project consists of one serial and several parallel versions of a molecular dynamics 

simulation in the Julia programming language.  These implementations are contained in IJulia 

notebooks.  The entire project is publicly available on Github at: https://github.com/ejc44/MD.  

Specific details regarding each version are included in each notebook, and separate timing 

notebooks are provided that use the BenchmarkTools.jl package. There are also three Testing 

folders containing the parameter and data files used for the timing tests. The last folder, called 

Incomplete, contains a not fully implemented GPU version of the code. My raw timing data, 

class presentation, and this report are all also included in the repository.  Some of the information 

contained in this report is also included in the repository README file, the individual IJulia 

notebooks, or the class presentation. 

 

This report first gives a general overview of molecular dynamics simulations.  It then describes 

the most significant details for this project’s serial and parallel implementations of a molecular 

dynamics code in Julia.  Finally, the report compares the performance of the serial and parallel 

versions using the BechmarkTools.jl package and draws some conclusions about the different 

parallelization methods.  

 

II. Molecular Dynamics 

 

Molecular dynamics is a type of deterministic N-body simulation method.  It is used to model the 

evolution of a system of particles over a fixed time period.  In typical scientific applications, the 

particles in the simulations represent atoms or molecules, and the interparticle forces are 

calculated using potentials or force fields.  However, other types of systems can be modeled with 

an appropriate implementation of the forces between particles.  As such, molecular dynamics is a 

very flexible simulation method.  Given the force on each particle, the trajectories are calculated 

by numerically solving Newton’s equations of motion 𝐹⃑ = 𝑚𝑎⃑.  There are many methods 

available to numerically integrate Newton’s equations, but one popular method is the Velocity 

Verlet algorithm.  This algorithm involves solving the following equations for each particle at 

each time step [1] 

𝑥⃑(𝑡 + 𝛥𝑡) = 𝑥⃑(𝑡) + 𝑣⃑(𝑡)𝛥𝑡 +  
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𝑎⃑(𝑡)𝛥𝑡2 

𝑣⃑(𝑡 + 𝛥𝑡) = 𝑣⃑(𝑡) +
𝑎⃑(𝑡) + 𝑎⃑(𝑡 + 𝛥𝑡)
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𝑎⃑(𝑡 + 𝛥𝑡) =  𝑓(𝑡)/𝑚 

where 𝑥⃑(𝑡) is the position of the particle, 𝑣⃑(𝑡) is the velocity of the particle, 𝑎⃑(𝑡) is the 

acceleration of the particle, and 𝑓(𝑡) is the force on the particle at time 𝑡.  Also, 𝑚 is the mass of 

the particle, and 𝛥𝑡 is the length of the time step.  This numerical integration algorithm is the one 

used in this project. 

 

Figures 1 and 2 below show the initial and final positions of forty particles in a simple system.  

There are two types of particles.  Interactions between particles of the same type are repulsive, 

while interactions between particles of different types are attractive.  They are confined in a 

three-dimensional box with periodic boundary conditions.  The simulation is run for 1000 time 

steps with 𝛥𝑡 set to 0.01.  This example is simple, but the particle motion is evident. 

 

   

  

 

 

 

 

 

 

 

 

 

 

 

 

 

III. Implementation Details 

 

This section of the report first describes some important features common to all versions of the 

code.  It then describes the specific implementation details of the different parallel versions. 

A. Features Common to All Versions 

a. The option to read parameters such as the number of simulation steps and/or the 

starting configuration for the position, velocity, acceleration, and forces from 

external files. These files must be in the same folder as the notebook and have the 

correct file names as specified in the code.  Also, the user cannot pick and choose: 

if one parameter is read from a file, all the parameters must be read from files and 

if one type of starting configuration data is read from a file, all the starting 

configuration data must be read from files.  Note: If the parameters and/or initial 

data is read from files, the program assumes the files are compatible (i.e. the 

Figure 1: Initial particle configuration Figure 2: Final particle configuration 
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dimension in the dim.txt file matches the dimensions of the particles' positions, 

etc.). This is not a problem if the user is restarting from previously saved files but 

could be a problem if the user has made changes to the files or generated them in 

some other way. 

b. The option to directly specify the parameters in the notebook. Note: These 

parameters are all constants, so the user must restart the kernel to redefine them. 

c. The option to save the parameters and final configuration data to external files.  

This is especially useful if the user may want to later continue the same 

simulation. 

d. The option to model finite or infinite systems. 

e. The ability to make finite systems periodic or non-periodic. 

f. If the initial configuration data is not specified in a file, it can be generated in the 

code.  For example, the starting positions are currently randomly generated within 

the specified box size.  The user can modify any of the initial conditions by 

altering the initialize() function. 

g. The forces are currently all of the form 1 𝑟2⁄  .  The strength of the force between 

any two types of particles is randomly generated, interactions between particles of 

the same type are repulsive, and interactions between particles of different types 

are attractive.  This was chosen for simplicity.  However, the user can easily 

modify the form and strength of the forces by altering the find_forces() and 

gen_interaction() functions.   

h. For two or three dimensional simulations, the system can be visually displayed in 

a plot. For non-Windows systems, the user can also use the Interact package to 

manipulate the plot to see the movement of the particles in the system over time. 

One of the parameters sets the frequency with which the program saves the 

particles' positions. 

 

B. Threads Implementation 

This version of the molecular dynamics code uses the Threads.@threads macro to implement 

parallelism.  This macro is used for the outermost for loop for both the step_update() and 

find_force() functions, as shown in Figures 3 and 4 below, which divides the work in this for 

loop between the available threads.  The step_update() function performs the Velocity Verlet 

integration to update the positions, velocities, and accelerations, while the find_force() 

function finds the new forces once the particles have all been moved.  In each function, the 

outermost for loop iterates over the particles.  This can be parallelized in the step_update() 

function because the Velocity Verlet algorithm for each particle only depends on that 

particle’s properties, and it can be parallelized in the find_force() function because the forces 

only depend on the distances between particles and the types of the particles.  Note that to 

achieve parallelism, it is necessary to first set JULIA_NUM_THREADS to a number greater 

than 1 before starting Julia. 
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Figure 3: step_update() function using Threads.@threads macro 

 

Figure 4: find_force() function using Threads.@threads macro 
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C. SharedArray @parallel Implementation 

This version of the molecular dynamics code uses SharedArrays and the @sync @parallel 

macro to implement parallelism.  The SharedArray data type is used to hold the positions, 

velocities, accelerations, and forces so that each process/worker has access to the whole 

array.  This is important because while each worker should only write to the portion of the 

array it is processing, the workers may need to read data from other parts of the arrays, such 

as when calculating the distance between two particles in the find_force() function.  The 

@sync @parallel macro is used for the outermost for loop for both the step_update() and 

find_force() functions, with the step_update() function shown in Figure 5 below (the 

find_force() function is similarly modified).  This divides the work in these outermost loops 

amongst the workers.  The reasons these loops can be parallelized is discussed in the 

Threads.@threads section above.  To get multiple processes/workers, it is necessary to use 

the addprocs() function.  However, because Julia currently schedules all the workers on one 

CPU thread, changing the number of threads should not affect the timing significantly [2]. 

 

Figure 5: step_update() function using SharedArrays and @sync @parallel macro 

D. Shared Array Chunks Implementation 

This version of the molecular dynamics code also uses SharedArrays to implement 

parallelism.  However, instead of splitting the work between the workers using the @sync 

@parallel macro, this version of the code uses manual indexing to split the arrays into chunks 

for each worker to process.  The indexing function is in Figure 6 and was taken from the 
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SharedArrays example in the Julia documentation [2].  Using this function, the outermost for 

loops in the the step_update() and find_force() functions can again be parallelized.  The 

parallelization of the step_update() function is shown in Figures 7 and 8 below.  To get 

multiple processes/workers, it is necessary to use the addprocs() function.  Also, if more 

workers are added, the indexing myrange() function and the step_update_chunk!() functions 

must be recompiled so that they are defined on each process using the @everywhere macro.  

However, because Julia currently schedules all the workers on one CPU thread, changing the 

number of threads should not affect the timing significantly [2]. 

 

Figure 6: Indexing function for SharedArrays taken from Julia documentation [2] 

 

Figure 7: step_update() function 
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Figure 8: step_update_chunk!() function that uses the indexing function so that each worker only performs the 

updates on its part of the arrays 

 

E. Attempt at GPU Implementation 

A cursory attempt was made at adapting the molecular dynamics code for use on a GPU.  

However, the step_update() and find_force() functions cannot easily be translated to 

broadcast functions because of the many conditionals they contain.  This could be a future 

area of research. 

IV. Performance Data 

  

To compare the performance of the different versions of the molecular dynamics code, separate 

benchmarking notebooks were created that eliminated the functionality related to plotting.  Only 

the loop that updated the configurations using the step_update() and find_force() functions was 

timed.  The parameters and initial configurations were read in from files, so that each version of 

the code did the exact same calculations (as molecular dynamics is deterministic).  The codes 

were run for 1000 time steps with 100, 500, and 1000 particles and with both four and eight 

threads.  All other parameters were kept constant, so they are not particularly relevant for 

comparison purposes.  However, all the testing files are stored in the Github repository in the 

three testing folders, so any parameter can be examined and these tests can be replicated.  These 

tests were performed on a laptop with an Intel Core i7-7700HQ CPU that contains four physical 

cores and eight threads due to hyperthreading.  Whether hyperthreading is useful was discussed 

frequently in class, so simulations were run with both four and eight threads to see if adding 
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more threads resulted in speedup.  The minimum times for each code found using the 

@benchmark macro in the BenchmarkTools.jl package are shown in Figure 9 below, and the 

results are discussed in the following section.  The minimum times were chosen based on the in-

class discussions that the minimum time best reflects how quickly the code can run when other 

background processes are not competing for the CPU.  However, there were only small 

differences between the minimum and average times. 

 

 

Figure 9: Timing data for different versions of the molecular dynamics simulation code when 100, 500, and 1000 

particles were used 

A. Notes on the Timing Plot 

a. The time axis is cut off at 50.0 seconds to make the most relevant data easily 

visible. 

b. For each of the SharedArray implementations, one, three, and nine workers were 

used. 

c. As expected, the number of threads only affected the implementation that used the 

Threads.@threads macro.  The serial version was not affected as expected.  Also, 

because Julia currently schedules all the workers on one CPU thread [2], changing 

the number of threads did not affect the timing for the various SharedArray 

implementations. 

d. No data was collected for the SharedArray chunks with nine workers for 500 or 

1000 particles because the code ran so slowly 
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V. Results and Conclusions 

 

The Threads.@threads parallel implementation was the only version faster than the serial 

version.  When four threads were used, the threads version achieved about 3x speedup compared 

to the serial version for all three numbers of particles.  When eight threads were used, it achieved 

about 4x speedup compared to the serial version.  Thus, doubling the number of threads did 

increase the speedup but not by a factor of two.  This implies hyperthreading does result in some 

improvement in performance, but it would be necessary to test other numbers of threads to find 

the optimal number. 

 

Neither of the SharedArray versions was ever faster than the serial version.  The version that 

manually divided the arrays into chunks was much slower than the version that used the 

@parallel macro.  For the manual chunks version, increasing the number of workers increased 

the runtime.  This may be because the overhead of the additional function calls dominates the 

runtime.  For the @parallel version, using only one process was slowest while using three 

workers was fastest when 500 or 1000 particles were used.  The three workers runtime was only 

about 13% slower and the nine workers runtime was only about 18% slower than the serial 

version for 1000 particles.  Also, the difference between the serial and parallel runtimes 

decreased for the @parallel version with three or nine workers, so it is possible the parallel 

version might be faster than the serial version for even larger numbers of particles.  It would be 

interesting to further experiment with the number of particles and the number of workers to see if 

it is possible to achieve speedup compared with the serial version using the SharedArray 

@parallel implementation.  However, based on the timing data in Figure 9 above, it seems likely 

that the Threads.@threads version would remain the fastest.  This is logical because for the 

SharedArray versions, all the workers are scheduled on one CPU thread [2].  Therefore, using 

multiple workers is only useful if the program is I/O bound where one worker can run while 

others are waiting for memory.  The molecular dynamics simulations do require some memory 

accesses but are not extremely I/O intensive, so the overhead of using multiple workers and 

switching between them is greater than any speedup achieved.  In contrast, the Threads.@threads 

version can take advantage of the fact that the computer has multiple cores. 
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