
Crabb 1

Emily Crabb

6.338/18.337 Final Project

Molecular Dynamics Simulations with Julia

I. Project Overview

This project consists of one serial and several parallel versions of a molecular dynamics

simulation in the Julia programming language. These implementations are contained in IJulia

notebooks. The entire project is publicly available on Github at: https://github.com/ejc44/MD.

Specific details regarding each version are included in each notebook, and separate timing

notebooks are provided that use the BenchmarkTools.jl package. There are also three Testing

folders containing the parameter and data files used for the timing tests. The last folder, called

Incomplete, contains a not fully implemented GPU version of the code. My raw timing data,

class presentation, and this report are all also included in the repository. Some of the information

contained in this report is also included in the repository README file, the individual IJulia

notebooks, or the class presentation.

This report first gives a general overview of molecular dynamics simulations. It then describes

the most significant details for this project’s serial and parallel implementations of a molecular

dynamics code in Julia. Finally, the report compares the performance of the serial and parallel

versions using the BechmarkTools.jl package and draws some conclusions about the different

parallelization methods.

II. Molecular Dynamics

Molecular dynamics is a type of deterministic N-body simulation method. It is used to model the

evolution of a system of particles over a fixed time period. In typical scientific applications, the

particles in the simulations represent atoms or molecules, and the interparticle forces are

calculated using potentials or force fields. However, other types of systems can be modeled with

an appropriate implementation of the forces between particles. As such, molecular dynamics is a

very flexible simulation method. Given the force on each particle, the trajectories are calculated

by numerically solving Newton’s equations of motion 𝐹⃑ = 𝑚𝑎⃑. There are many methods

available to numerically integrate Newton’s equations, but one popular method is the Velocity

Verlet algorithm. This algorithm involves solving the following equations for each particle at

each time step [1]

𝑥⃑(𝑡 + 𝛥𝑡) = 𝑥⃑(𝑡) + 𝑣⃑(𝑡)𝛥𝑡 +
1

2
𝑎⃑(𝑡)𝛥𝑡2

𝑣⃑(𝑡 + 𝛥𝑡) = 𝑣⃑(𝑡) +
𝑎⃑(𝑡) + 𝑎⃑(𝑡 + 𝛥𝑡)

2
𝛥𝑡

https://github.com/ejc44/MD

Crabb 2

𝑎⃑(𝑡 + 𝛥𝑡) = 𝑓(𝑡)/𝑚

where 𝑥⃑(𝑡) is the position of the particle, 𝑣⃑(𝑡) is the velocity of the particle, 𝑎⃑(𝑡) is the

acceleration of the particle, and 𝑓(𝑡) is the force on the particle at time 𝑡. Also, 𝑚 is the mass of

the particle, and 𝛥𝑡 is the length of the time step. This numerical integration algorithm is the one

used in this project.

Figures 1 and 2 below show the initial and final positions of forty particles in a simple system.

There are two types of particles. Interactions between particles of the same type are repulsive,

while interactions between particles of different types are attractive. They are confined in a

three-dimensional box with periodic boundary conditions. The simulation is run for 1000 time

steps with 𝛥𝑡 set to 0.01. This example is simple, but the particle motion is evident.

III. Implementation Details

This section of the report first describes some important features common to all versions of the

code. It then describes the specific implementation details of the different parallel versions.

A. Features Common to All Versions

a. The option to read parameters such as the number of simulation steps and/or the

starting configuration for the position, velocity, acceleration, and forces from

external files. These files must be in the same folder as the notebook and have the

correct file names as specified in the code. Also, the user cannot pick and choose:

if one parameter is read from a file, all the parameters must be read from files and

if one type of starting configuration data is read from a file, all the starting

configuration data must be read from files. Note: If the parameters and/or initial

data is read from files, the program assumes the files are compatible (i.e. the

Figure 1: Initial particle configuration Figure 2: Final particle configuration

Crabb 3

dimension in the dim.txt file matches the dimensions of the particles' positions,

etc.). This is not a problem if the user is restarting from previously saved files but

could be a problem if the user has made changes to the files or generated them in

some other way.

b. The option to directly specify the parameters in the notebook. Note: These

parameters are all constants, so the user must restart the kernel to redefine them.

c. The option to save the parameters and final configuration data to external files.

This is especially useful if the user may want to later continue the same

simulation.

d. The option to model finite or infinite systems.

e. The ability to make finite systems periodic or non-periodic.

f. If the initial configuration data is not specified in a file, it can be generated in the

code. For example, the starting positions are currently randomly generated within

the specified box size. The user can modify any of the initial conditions by

altering the initialize() function.

g. The forces are currently all of the form 1 𝑟2⁄ . The strength of the force between

any two types of particles is randomly generated, interactions between particles of

the same type are repulsive, and interactions between particles of different types

are attractive. This was chosen for simplicity. However, the user can easily

modify the form and strength of the forces by altering the find_forces() and

gen_interaction() functions.

h. For two or three dimensional simulations, the system can be visually displayed in

a plot. For non-Windows systems, the user can also use the Interact package to

manipulate the plot to see the movement of the particles in the system over time.

One of the parameters sets the frequency with which the program saves the

particles' positions.

B. Threads Implementation

This version of the molecular dynamics code uses the Threads.@threads macro to implement

parallelism. This macro is used for the outermost for loop for both the step_update() and

find_force() functions, as shown in Figures 3 and 4 below, which divides the work in this for

loop between the available threads. The step_update() function performs the Velocity Verlet

integration to update the positions, velocities, and accelerations, while the find_force()

function finds the new forces once the particles have all been moved. In each function, the

outermost for loop iterates over the particles. This can be parallelized in the step_update()

function because the Velocity Verlet algorithm for each particle only depends on that

particle’s properties, and it can be parallelized in the find_force() function because the forces

only depend on the distances between particles and the types of the particles. Note that to

achieve parallelism, it is necessary to first set JULIA_NUM_THREADS to a number greater

than 1 before starting Julia.

Crabb 4

Figure 3: step_update() function using Threads.@threads macro

Figure 4: find_force() function using Threads.@threads macro

Crabb 5

C. SharedArray @parallel Implementation

This version of the molecular dynamics code uses SharedArrays and the @sync @parallel

macro to implement parallelism. The SharedArray data type is used to hold the positions,

velocities, accelerations, and forces so that each process/worker has access to the whole

array. This is important because while each worker should only write to the portion of the

array it is processing, the workers may need to read data from other parts of the arrays, such

as when calculating the distance between two particles in the find_force() function. The

@sync @parallel macro is used for the outermost for loop for both the step_update() and

find_force() functions, with the step_update() function shown in Figure 5 below (the

find_force() function is similarly modified). This divides the work in these outermost loops

amongst the workers. The reasons these loops can be parallelized is discussed in the

Threads.@threads section above. To get multiple processes/workers, it is necessary to use

the addprocs() function. However, because Julia currently schedules all the workers on one

CPU thread, changing the number of threads should not affect the timing significantly [2].

Figure 5: step_update() function using SharedArrays and @sync @parallel macro

D. Shared Array Chunks Implementation

This version of the molecular dynamics code also uses SharedArrays to implement

parallelism. However, instead of splitting the work between the workers using the @sync

@parallel macro, this version of the code uses manual indexing to split the arrays into chunks

for each worker to process. The indexing function is in Figure 6 and was taken from the

Crabb 6

SharedArrays example in the Julia documentation [2]. Using this function, the outermost for

loops in the the step_update() and find_force() functions can again be parallelized. The

parallelization of the step_update() function is shown in Figures 7 and 8 below. To get

multiple processes/workers, it is necessary to use the addprocs() function. Also, if more

workers are added, the indexing myrange() function and the step_update_chunk!() functions

must be recompiled so that they are defined on each process using the @everywhere macro.

However, because Julia currently schedules all the workers on one CPU thread, changing the

number of threads should not affect the timing significantly [2].

Figure 6: Indexing function for SharedArrays taken from Julia documentation [2]

Figure 7: step_update() function

Crabb 7

Figure 8: step_update_chunk!() function that uses the indexing function so that each worker only performs the

updates on its part of the arrays

E. Attempt at GPU Implementation

A cursory attempt was made at adapting the molecular dynamics code for use on a GPU.

However, the step_update() and find_force() functions cannot easily be translated to

broadcast functions because of the many conditionals they contain. This could be a future

area of research.

IV. Performance Data

To compare the performance of the different versions of the molecular dynamics code, separate

benchmarking notebooks were created that eliminated the functionality related to plotting. Only

the loop that updated the configurations using the step_update() and find_force() functions was

timed. The parameters and initial configurations were read in from files, so that each version of

the code did the exact same calculations (as molecular dynamics is deterministic). The codes

were run for 1000 time steps with 100, 500, and 1000 particles and with both four and eight

threads. All other parameters were kept constant, so they are not particularly relevant for

comparison purposes. However, all the testing files are stored in the Github repository in the

three testing folders, so any parameter can be examined and these tests can be replicated. These

tests were performed on a laptop with an Intel Core i7-7700HQ CPU that contains four physical

cores and eight threads due to hyperthreading. Whether hyperthreading is useful was discussed

frequently in class, so simulations were run with both four and eight threads to see if adding

Crabb 8

more threads resulted in speedup. The minimum times for each code found using the

@benchmark macro in the BenchmarkTools.jl package are shown in Figure 9 below, and the

results are discussed in the following section. The minimum times were chosen based on the in-

class discussions that the minimum time best reflects how quickly the code can run when other

background processes are not competing for the CPU. However, there were only small

differences between the minimum and average times.

Figure 9: Timing data for different versions of the molecular dynamics simulation code when 100, 500, and 1000

particles were used

A. Notes on the Timing Plot

a. The time axis is cut off at 50.0 seconds to make the most relevant data easily

visible.

b. For each of the SharedArray implementations, one, three, and nine workers were

used.

c. As expected, the number of threads only affected the implementation that used the

Threads.@threads macro. The serial version was not affected as expected. Also,

because Julia currently schedules all the workers on one CPU thread [2], changing

the number of threads did not affect the timing for the various SharedArray

implementations.

d. No data was collected for the SharedArray chunks with nine workers for 500 or

1000 particles because the code ran so slowly

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

0 200 400 600 800 1000

Ti
m

e
 in

 s
e

co
n

d
s

Number of particles in simulation

Serial (Threads = 4 or 8)

Threads.@threads with 4
threads
Threads.@threads with 8
threads
SharedArray @parallel 1
worker (Threads = 4 or 8)
SharedArray @parallel 3
workers (Threads = 4 or 8)
SharedArray @parallel 9
workers (Threads = 4 or 8)
SharedArray chunks 1
worker (Threads = 4 or 8)
SharedArray chunks 3
workers (Threads = 4 or 8)
SharedArray chunks 9
workers (Threads = 4 or 8)

Crabb 9

V. Results and Conclusions

The Threads.@threads parallel implementation was the only version faster than the serial

version. When four threads were used, the threads version achieved about 3x speedup compared

to the serial version for all three numbers of particles. When eight threads were used, it achieved

about 4x speedup compared to the serial version. Thus, doubling the number of threads did

increase the speedup but not by a factor of two. This implies hyperthreading does result in some

improvement in performance, but it would be necessary to test other numbers of threads to find

the optimal number.

Neither of the SharedArray versions was ever faster than the serial version. The version that

manually divided the arrays into chunks was much slower than the version that used the

@parallel macro. For the manual chunks version, increasing the number of workers increased

the runtime. This may be because the overhead of the additional function calls dominates the

runtime. For the @parallel version, using only one process was slowest while using three

workers was fastest when 500 or 1000 particles were used. The three workers runtime was only

about 13% slower and the nine workers runtime was only about 18% slower than the serial

version for 1000 particles. Also, the difference between the serial and parallel runtimes

decreased for the @parallel version with three or nine workers, so it is possible the parallel

version might be faster than the serial version for even larger numbers of particles. It would be

interesting to further experiment with the number of particles and the number of workers to see if

it is possible to achieve speedup compared with the serial version using the SharedArray

@parallel implementation. However, based on the timing data in Figure 9 above, it seems likely

that the Threads.@threads version would remain the fastest. This is logical because for the

SharedArray versions, all the workers are scheduled on one CPU thread [2]. Therefore, using

multiple workers is only useful if the program is I/O bound where one worker can run while

others are waiting for memory. The molecular dynamics simulations do require some memory

accesses but are not extremely I/O intensive, so the overhead of using multiple workers and

switching between them is greater than any speedup achieved. In contrast, the Threads.@threads

version can take advantage of the fact that the computer has multiple cores.

References

1. “Verlet Integration.” From https://www.saylor.org/site/wp-content/uploads/2011/06/MA221-

6.1.pdf

2. “Parallel Computing.” The Julia Language. From

https://docs.julialang.org/en/stable/manual/parallel-computing

