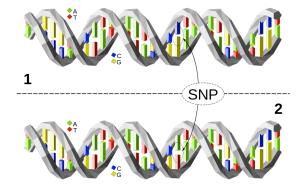
GWAS Analysis in Julia

Kayla McCue

Genome Wide Association Study (GWAS)


 Want to be able to associate phenotypes with SNPs across the whole genome

This is done using a SNP array

GWAS Vocabulary

Single Nucleotide Polymorphism (SNP)

Allele Frequency

Phenotype

Analysis in Julia

- IHT Package
 - https://github.com/klkeys/IHT.jl
 - PLINK Package
 - https://github.com/klkeys/PLINK.jl
 - Iterative Hard Thresholding
 - $-\ell_0$ -penalized multivariate regression

$$\frac{1}{2}\|\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}\|_2^2 + \lambda \|\boldsymbol{\beta}\|_0$$

- NP-hard, so use the heuristic projected gradient update $\beta^{m+1} = P_{S_{\nu}}[\beta^m - \mu \nabla(\beta^m)]$

Analysis in Julia

- Simulating data and testing IHT compared with Lasso and MCP gives favorable results
- Provides reasonable results on real GWAS data
- Julia implementation reduces run time compared to original analysis

Analysis of Multiple Simulated Datasets

	Simulation Method 1		Simulation Method 2		Simulation Method 3	
	Precision	Recall	Precision	Recall	Precision	Recall
IHT	.50	.70	.58	.70	1.00	.70
Lasso	1.00	1.00	.09	1.00	.17	.90