
SIMD	Vectorization	in	Julia	
in	the	Context	of	Nuclear	

Reactor	Simulation	
Speaker:	John	Tramm

10/24/2016

1

SIMD:	Critical	for	High	Performance

Image	Source:	Intel 2

Nuclear	Reactor	Simulation

• Method	of	
Characteristics	(MOC)
• Not	a	matrix	method!
• Vectorizeable inner	
loop

 g(s) = g(0)e
�⌃tg s +

Qg

⌃tg

�
1� e�⌃tg s

�

3

Mini-Apps	Make	for	Easy	
Comparisons

Nuclear	Reactor	Simulation	Application

Performance	
Kernel

Julia
Mini-App

C
Mini-App

SIMD	optimize
and	compare
performance

4

Performance	Kernel	Pseudocode
for N intersections:

Randomly sample source region
Randomly sample material type
Randomly sample distance d
for each energy group g:

end
end

� = (�Q)
�
1.0� e�⌃d

�

� = �+ 4⇡�

 = ��

5

Julia	Code	(Simple	Version)
function TRRM_simple()

Allocate Scalar Flux Array
scalar_flux = rand(Float64, n_source_regions * energy_groups)
Allocate Source Array
source = rand(Float64, n_source_regions * energy_groups)
Allocate Angular Flux Vector
angular_flux = rand(Float64, energy_groups)
Allocate Cross Sections
cross_sections = rand(Float64, n_material_types * energy_groups)

Outer loop represents each geometrical intersection
for i in 1:n_intersections

Randomly sample a source region
source_id = rand(0:n_source_regions-1)

Randomly sample a material type
material = rand(0:n_material_types-1)

Randomly sample a distance (cm)
distance = rand(Float64)

Attenuate flux for intersection for all energy groups
for e in 1:energy_groups

Compute Flux/Source index & XS index
 fs_idx = (source_id) * energy_groups + e
 xs_idx = (material) * energy_groups + e

Actual Computations
tau = cross_sections[xs_idx] * distance

 q_val = source[fs_idx]
 exponential = 1.0 - exp(-tau)

delta_psi = (angular_flux[e] - q_val) * exponential

 # Store Results
 scalar_flux[fs_idx] += 4.0 * pi * delta_psi
 angular_flux[e] -= delta_psi
 end
 end
end

6

Performance	Comparison

Language Optimization Type Time	per	Integration	[ns]	
(Lower is	Better)

Julia Unoptimized 387.79

Basic	Optimizations
(types,	no	globals)

Vector	SIMD

For	Loop	SIMD

For	Loop	SIMD
w/Yeppp! exp()

C Unoptimized

Basic	Optimizations	
(compiler flags)

SIMD	Optimized

7

Julia	Basic	Optimizations

• Explicit	typing
• No	global	variables

8

Performance	Comparison

Language Optimization Type Time	per	Integration	[ns]	
(Lower is	Better)

Julia Unoptimized 387.79

Basic	Optimizations
(types,	no	globals)

47.55

Vector	SIMD

For	Loop	SIMD

For	Loop	SIMD
w/Yeppp! exp()

C Unoptimized

Basic	Optimizations	
(compiler flags)

SIMD	Optimized

9

Julia	SIMD	Optimization	Strategies

@fastmath @inbounds @simd for e in 1:energy_groups
Computation

end

@fastmath @inbounds @simd for e in 1:energy_groups
Computation

end

@fastmath @inbounds @simd for e in 1:energy_groups
Computation

end

for e in 1:energy_groups
Computation
Computation
Computation

end

Simple For	Loop	SIMD

Computations
@fastmath @inbounds A = B[i:j] .* d
Computations
@fastmath @inbounds C = D[i:j] * A
Computations
@fastmath @inbounds E[k:l] = A - C

Vector	SIMD

10

Performance	Comparison

Language Optimization Type Time	per	Integration	[ns]	
(Lower is	Better)

Julia Unoptimized 387.79

Basic	Optimizations
(types,	no	globals)

47.55

Vector	SIMD 47.29

For	Loop	SIMD 8.73

For	Loop	SIMD
w/Yeppp! exp()

C Unoptimized

Basic	Optimizations	
(compiler flags)

SIMD	Optimized

11

Yeppp!	Vector	Math	Library

• SIMD	vectorized library	for	Julia
• Large	portion	of	computational	time	in	MOC	
algorithm	is	exponential	evaluation
• Call	to	Yeppp.exp!(exponential,	-tau)

12

Performance	Comparison

Language Optimization Type Time	per	Integration	[ns]	
(Lower is	Better)

Julia Unoptimized 387.79

Basic	Optimizations
(types,	no	globals)

47.55

Vector	SIMD 47.29

For	Loop	SIMD 8.73

For	Loop	SIMD
w/Yeppp! exp()

18.37

C Unoptimized

Basic	Optimizations	
(compiler flags)

SIMD	Optimized

13

Performance	Comparison

Language Optimization Type Time	per	Integration	[ns]	
(Lower is	Better)

Julia Unoptimized 387.79

Basic	Optimizations
(types,	no	globals)

47.55

Vector	SIMD 47.29

For	Loop	SIMD 8.73

For	Loop	SIMD
w/Yeppp! exp()

18.37

C Unoptimized 3.30

Basic	Optimizations	
(compiler flags)

SIMD	Optimized

14

Basic	C	Optimizations

• Unoptimized =	no	optimizing	compiler	flags
• Basic	optimizations	include	the	following	intel	
compiler	flags:
• -fast
• -ipo
• -no-prec-div

15

Performance	Comparison

Language Optimization Type Time	per	Integration	[ns]	
(Lower is	Better)

Julia Unoptimized 387.79

Basic	Optimizations
(types,	no	globals)

47.55

Vector	SIMD 47.29

For	Loop	SIMD 8.73

For	Loop	SIMD
w/Yeppp! exp()

18.37

C Unoptimized 3.30

Basic	Optimizations	
(compiler flags)

2.68

SIMD	Optimized

16

C	SIMD	Optimization	Strategies

#pragma omp simd
for(int i = 0; i < energy_groups; i++)

// Computation
// Computation
// Computation

end

for(int i = 0; i < energy_groups; i++)
// Computation
// Computation
// Computation

end

Simple For	Loop	SIMD

17

Also	required:	aligned	allocations

Performance	Comparison

Language Optimization Type Time	per	Integration	[ns]	
(Lower is	Better)

Julia Unoptimized 387.79

Basic	Optimizations
(types,	no	globals)

47.55

Vector	SIMD 47.29

For	Loop	SIMD 8.73

For	Loop	SIMD
w/Yeppp! exp()

18.37

C Unoptimized 3.30

Basic	Optimizations	
(compiler flags)

2.68

SIMD	Optimized 1.89

18

Conclusions

• SIMD	in	Julia	v0.5
1. For	loops	are	much	faster	than	vector	operations	(for	vector	

length	32)
2. Yeppp!	library	did	not	provide	speedup,	as	it	is	higher	

precision	than	what	is	needed	by	MOC	algorithm
3. Questionable	if	@simd works	for	this	algorithm

• In	the	context	of	a	neutron	transport	simulation:
1. Unoptimized implementation	was	117x	faster	in	C	than	Julia
2. Basic	optimized	implementation	was	17x	faster	in	C	than	

Julia
3. SIMD	optimized	implementation	was	4.6x	faster	in	C	than	

Julia

19

