
Accelerating Deep Learning Optimization in Mocha.jl

Student: Alexander Amini
Proffessors: Alan Edelman, David Sanders

Abstract— The process of iteratively minimizing a cost
function, as in machine learning, is typically done through
Stochastic Gradient Descent (SGD). Even though this tech-
nique has existed and been widely used for decades, recent
advances in deep-learning and other large scale learning
problems have brought about new challenges to feasibly
using SGD for very large scale problems. While there have
been advances in accelerating gradient descent, minimal
work has been done to investigate their effectiveness in a
deep or any non-convex setting. In this project, I will improve
the state of the art Julia deep learning platform, Mocha.jl,
to support various different types of optimization schemes.
By having a modular programing approach the optimizers
created as part of this project will be able to be “plugged
into” existing deep learning code by changing only a single
line of code, but still achieve accelerated training speedups.

I. MOCHA.JL

Mocha.jl [1] is a deep learning framework for Julia that
enables quick prototyping of various deep architectures,
such as Convolutional Neural Network (CNN), Recurrent
Neural Networks (RNN), Autoencoders, and more. It was
inspired by, and shares much of the same syntactical
features of the popular C++ deep learning library, Caffe
[2].

Deep Neural Networks are built in a sequential pattern,
one layer at a time, stacked on top of and feeding into
another layer. The collection of weights and parameters of
the whole network are aggregated together and optimized
to best fit the training data. Stochastic gradient descent
(SGD) is widely used to optimize these parameters for
a number of reasons, from having theoretical guaranteed
convergence rates, to being relatively simple to imple-
mentation. However, despite these advantages a wide
topic of machine learning in the past decade has been
to develop accelerated gradient descent methods, mainly
in the context of convex optimization problems.

In this project, I will extend the Mocha.jl framework to
offer various accelerated optimization algorithms. These
algorithms will be implemented in modular setting so that
they can be inserted straight into existing deep Mocha
architectures by changing only a single line of code and
automatically achieve speedups

II. PREVIOUS WORK

In machine learning, given a training set of m inputs,
x1, x2, ..., xm and labels y1, y2, ..., ym, we define a loss
function ψi(θ) where θ is the vector of weights parame-
terizing a function that estimates the ith label given the ith
sample as input. The empirical loss, Ψ, of this problem
can now be expressed as the sum loss over all m data
points.

Stochastic Gradient Descent (SGD) [4] is a method to
minimize Ψ(θ) by identifying the optimal weight vector,
θ. In this algorithm, we randomly pick a data sample,
(xi, yi), from the training set and use the gradient at this
sample to update the weight vector as follows:

Ψ(θ) =

m∑
i=1

ψi(θ) (1)

θt+1 = θt − γ∇Ψ(θ) (2)

where γ is the learning rate, representing the magnitude
to step in the direction of the negative gradient.

Mocha.jl provides support to solving deep neural net-
works utilizing the SGD update equation presented above.
Furthermore, they also provide a slightly modified ex-
tension using momentum, known as Nesterov’s Gradient
Descent algorithm [3]. These solvers can used to optimize
the network parameters by initializing them as follows:

method = SGD(); # init SGD
method = Nesterov(); # init Momentum

Using Mocha.jl, I have already started to build net-
works, and datasets to test the performance of the different
optimizers. First, to generate a dataset of linear data,
perturbed with normally distributed Gaussian noise, then
to build a single Perceptron model in order to estimate a
line of best fit from the data θ = (slope,y-intercept). In
addition I’ve created a Recorder type to record some
of the internal Julia convergences of the model.

Fig. 1. Convergence of the SGD algorithm over time (blue line),
descending into the global minimum over the topology of θ = (w, b)
(slope and y-intercept).

III. PROPOSAL

One of the main problems of SGD and Nesterov’s
Momentum algorithm is the issue of fixed learning rates
(γ). As the optimizer descends, the learning rate should
also be decreasing to ensure stable convergence patterns,
of which I have already begun to see as part of my pre-
liminary testing. In this project, I will implement several
adaptive gradient descent algorithms (such as AdaGrad
[5], and AdaDelta [6]). The code created will be modular
such that a Mocha.jl user can test and evaluate their
existing algorithms by simply changing a single line of
code, as shown above). Since these algorithms adaptively
modify learning rates for each dimension of the data, they
have theoretically faster convergence rates than the vanilla
SGD. Therefore, the aim of this project is for existing
Mocha.jl users (as well as new users) will be able to
achieve training speedups by using a wider array of faster
accelerated optimization schemes.



REFERENCES

[1] Mocha.jl, pluskid. GitHub repository. https://github.com/
pluskid/Mocha.jl

[2] Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Gir-
shick, R., Guadarrama, S., and Darrell, T. Caffe: Convolutional
Architecture for Fast Feature Embedding (2014). arXiv preprint
arXiv:1408.5093

[3] Nesterov, Yurii. “A method of solving a convex programming
problem with convergence rate O (1/k2).” Soviet Mathematics
Doklady. Vol. 27. No. 2. 1983.

[4] Robbins, Herbert, and David Siegmund. “A convergence theorem
for non negative almost supermartingales and some applications.”
Herbert Robbins Selected Papers. Springer New York, 1985. 111-
135.

[5] Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient
methods for online learning and stochastic optimization. Journal
of Machine Learning Research, 12(Jul), 2121-2159.

[6] Zeiler, M. D. (2012). ADADELTA: an adaptive learning rate
method. arXiv preprint arXiv:1212.5701.

https://github.com/pluskid/Mocha.jl
https://github.com/pluskid/Mocha.jl

	Mocha.jl
	Previous Work
	Proposal
	References

