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1 Introduction

1.1 Bayesian inference

Inverse problems often appear in science and engineering. It involves quantifying our knowledge of an
unknown input of a math/computational model, based on measurements of its output. Mainly, if we have a
model f , and noisy measurements y such that

y = f(θ) + noise

what can we say about the input θ?

Bayesian inference is one possible approach to solve inverse problems. Using Bayesian inference, we model our
belief on the values the input can take using a distribution. Its recipe prescribes the posterior distribution,
p(θ|y), to our knowledge of θ after observing y.

1.2 Final project

For our final project, we implemented Randomize-then-Optimize (RTO) [1], one of many sampling algorithms
that can be used to numerically explore the Bayesian posterior. RTO is particularly attractive since its most
expensive steps are embarrassingly parallel.

We compared our implementation of RTO, to two other sampling algorithms available from the Julia package
Mamba: Metropolis-Adjusted Langevin Algorithm (MALA) [3], and Hamiltonian Monte-Carlo (HMC) [2]. We
found that RTO is comparable in efficiency to the other two samplers and scales reasonably well in parallel.

2 A simple motivating example

We begin our narrative with a simple motivating example. Consider the following parameterized model with
parameters θ:

g(x; θ) = θ1 + θ2e
θ3x

where we are given two noisy measurements given as {x, y} pairs.

Figure 1 depicts the data and models generated by randomly drawing θ from a standard multivariate normal.
Although the data does not uniquely identify any single parameter, it is clear that not all values of θ match
the data. Using Bayesian inference, we can describe the likely values of θ through the posterior.

As seen in Figure 2, the posterior describes an interesting 3D relationship between the parameters. In
addition, the models in the posterior more closely match the data.

Remark: In fact, the true posterior contains a second “mode”. Similar to how optimization algorithms can
get stuck in a local minimum, sampling algorithms can (and often do) get stuck sampling from only one of
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Figure 1: Data and models generated from θ ∼ N(0, I).

(a) Posterior samples (b) Posterior predictive models

Figure 2: Posterior samples of θ in the first mode.
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many modes of a multi-modal posterior. For this motivating example, we can sample from the second mode
by choosing a different starting point. Samples from the second posterior mode are depicted in Figure 3.

(a) Posterior samples (b) Posterior predictive models

Figure 3: Posterior samples of θ in the second mode.

3 Julia package for Randomize-then-Optimize

For our final project, we implemented RTO — an optimization-based sampling algorithm for Bayesian infer-
ence. The Julia code is publicly available at https://github.com/wang-zheng/RandomizeThenOptimize.jl
along with a brief tutorial on how to use it.

The most computationally expensive step of RTO is to repeatedly solve an optimization problem, each with
random forcing in the objective function. For these optimizations, we use the gradient based algorithms in
NLopt. Since the objective functions do not depend on any previous solution, the optimization problems
are embarrassingly parallel. Our implementation takes advantage of this fact and will use any available
additional worker processors.

4 Numerical results

We conducted three numerical experiments, each with a different forward model — the function from
parameters θ to data y. The forward models are:

1. Parameter estimation, f : R3 → R2

f(θ) =

[
θ1 + θ2 e

θ3x1

θ1 + θ2 e
θ3x2

]
This experiment corresponds to the motivating parameter estimation problem in Section 2.

2. Sinusoidal, f : R2 → R
f(θ) = a sin(b θ1)− c θ2

This experiment produces a 2D sinusoidal-looking posterior distribution.
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3. Matrix multiply, f : R30 → R20

f(θ) = Aθ

This experiment tests the sampling algorithms a large (30-dimensional) parameter space.

We used three algorithms: MALA and HMC — from Mamba; and RTO — from our package; to sample the
posterior distributions of all three experiments.

All three algorithms should, in theory, draw samples from the same distribution. The samples visually
appear consistent from all samplers for all three experiments. Figure 4 depicts the sample posteriors for the
sinusoidal experiment. This result gives us confidence that RTO is correctly implemented.
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(a) HMC
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(b) MALA
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(c) RTO

Figure 4: Posterior samples for the sinusoidal example using all three samplers.

We then compare the sampling efficiency of the three samplers. The quality of a chain of correlated samples
generated from these algorithms, is often measured using Effective Sample Size (ESS). ESS can be thought
of as the number of independent samples that our chain of correlated samples contains1. We use ESS per
computation time as a measure of efficiency. ESS is calculated by Mamba and computation time is found
using BenchmarkTools. RTO slightly outperforms the other two algorithms for all three examples, as seen in
Table 1. However, since the other algorithms have many tunable settings that affect their sampling efficiency,
we can only conclude that these three samplers are comparable2.

Table 1: ESS per second

MALA HMC RTO

Experiment 1 900 525 1531
Experiment 2 452 199 1670
Experiment 3 230 212 241

Finally, we compare the parallel performance of RTO on the three examples. As seen in Figure 5, the
algorithm does not achieve ideal parallel scaling but does speed up as we add more workers.

1Technically, it is defined as the number of samples required in an independent Monte-Carlo estimate to have the same
variance as the Monte-Carlo estimate from our correlated chain. ESS is estimated component-wise using the autocorrelation.

2The efficiency of the three samplers are around the same order of magnitude.
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(a) Parameter estimation experiment (b) Sinusoidal experiment (c) Matrix multiply experiment

Figure 5: Posterior samples for the sinusoidal example using all three samplers.

A Some further thoughts

• For simple forward models, the array initialization in the algorithm’s inner most loop took most of the
computation time. I toyed with three different matrix initializations:

1. A = view(B,1:n,1:m)

2. A = Array(Float64,n,m)

3. A = Array(eltype(B),n,m)

Here the matrix B, is later written over. The list is ordered from fastest to slowest. However, the first
method requires that AbstractVector and AbstractMatrix are valid inputs for the user-specified
function. In addition, the second method assumes that all the inputs have elements of type Float64.
I ended up decided to go with the second method for a balance of speed and user-friendliness. Is there
a better way? What would you suggest?

• In developing the package I found it useful to define a function that performs a commutative operation
element-wise on two tuples. The specific operation I wanted was hcat and so I wrote a hidden function
in the package to do so. For the future, is there a simpler way to do this?

• On GitHub, have found many Julia packages with a LICENSE file. Do I need one? If so, how can I get
one?
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