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#Pkg.add( "NLopt")

using NLopt

Example 1: Parameter Estimation

As a simple, motivating example for RandomizeThenOptimize (and sampling algorithms in
general), we consider the problem of (Bayesian) parameter estimation. For this problem, we will set
up a small algebraic model g with a few unknown parameters 6; and specify a few noisy
measurements y, where

y; = g(x;, 0) + noise

Our belief on @ after seeing y, can be described using a distribution (the Bayesian posterior). We will
use RandomizeThenOptimize to sample from this distribution and then visualize the samples. We
will then (optionally) use Mamba to compute a few summary statistics.

Setting up the problem

Consder the following model with some parameters 6:
g(x; 0) = 6, + 0,

This model is an exponential with an unknown constant: 6;, amplitude: 8,, and growth/decay rate:
0.

g = (x,0) ->0[1] + B[2]*exp(O[3]*x)

(::#1) (generic function with 1 method)

Say we are given the following two noisy measurements, i.e. (x;, y;) pairs, what can we say about
0?

x = [-0.5; 0.5]
[-1; 2];

Well, two points are not enough to uniquely determine any of the parameters. However, if we try
sampling random parameters 8 ~ N(0, I) and plotting the corresponding models g(x; 6) ...

using Plots

#plotlyjs();
pyplot();
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scatter(x,y)
for i = 1:15
0 = randn(3)

plot!(x -> g(x,0), -1, 1)
end

plot! (xlabel="x", ylabel ="g(x)", legend=false)
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... most of the models do not match the data closely.

Certainly, these two data points give us some information about the parameters. One way we can
describe this information is through a distribution.

Using RandomizeThenOptimize.jl

RandomizeThenOptimize (RTO) creates this (posterior) distribution internally and draws samples
from it.

In order to describe the problem to RTO, we need to create the forward model,f -- a function that
takes the parameters @ and returns the measurements (which are compared to y):

(x150)
/ g8(x;0)

Since RTO uses gradient based optimization, we also require the Jacobian matrix of the forward

model f. The Julia Function we need to make should also accept an empty Jacobian matrix and
fill in the entries.
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# hand-coded gradient
dgdl = (x,0) -> [1; exp(0[3]*x); O[2]*exp(O[3]*x)*x ]'

# note that the function takes the current point 6 and an empty Jacobian mat
function f! (0::AbstractVector, jac::AbstractMatrix)
if length(jac) > 0
# fill up the Jacobian matrix
jac[1l,:] = dgdO(x[1],0)
jac[2,:] = dgdb(x[2],0)
end

return [g(x[1],0); g(x[2],0)]
end

/Users/zheng/.julia/v0.5/Conda/deps/usr/lib/python2.7/site-packages/matpl
otlib/font manager.py:1288: UserWarning: findfont: Font family [u'Helveti
ca'] not found. Falling back to Bitstream Vera Sans

(prop.get family(), self.defaultFamily[fontext]))

f! (generic function with 1 method)

In the following few lines, we include the RTO module, and set up the problem for it.

include( "RandomizeThenOptimize.jl")

# -- OR, you may run:

# Pkg.clone("https://github.com/wang-zheng/RandomizeThenOptimize.jl", "Randor
using RandomizeThenOptimize

The RandomizeThenOptimize: : Problem type is a container for all the information required to
solve our problem. We initialize a Problem by specifying the size of our parameter vector (in our
case 3) and size of our data (in our case 2).

# initialize the problem, with 3 inputs and 2 outputs for f(0)
p = Problem(3,2)

Problem(3,2)

We give the Problem all the other required information, such as forward model, data, and noise.

# Give p the function f!
forward model! (p, f!);

verbose! (p,true);

# set the observational noise
obs o!(p,[0.3,0.3]);

# give p the data
obs_datal!(p,y):
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# intialize the guess
#guess! (p,[1.,-1,-1])

We call the function rto_mcmc (p: :Problem, nsamps::Integer) to generate samples from the
(posterior) distribution. It returns a chain of correlated samples stored in a nsamps X n matrix,
where nsamps is the number of samples requested and 7 is the size of our parameter vector.

# sample!
chain = rto mecmc(p,30);

Optimizing for MAP... FTOL_REACHED.
Sampling... done.
Metropolizing... done.

Analyzing and Plotting

We can plot the models g(x; 8) corresponding to the samples we obtain.

scatter(x,y)
for i = 1:15
0 chain[i,:]
plot!(x -> g(x,0), -1, 1)
end
plot! (xlabel = "x", ylabel = "g(x)", legend = false)

g(x)

As shown, the models from the posterior distribution match the data more closely. We can sample
the distribution a bit more and scatter the points in parameter-space.
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nsamps = 1000;
chain = rto mcmc(p,nsamps);

Optimizing for MAP... FTOL REACHED.
Sampling... done.
Metropolizing... done.

Plots.scatter(chain[:,1],chain[:,2],chain[:,3], xlabel = "0 1", ylabel
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Here, we see an interesting 3D structure in the samples.
(Optional) Using Mamba.jl
We can use Mamba to analyze the samples and to plot pair-wise marginal densities.

#Pkg.add( "Mamba") # Large package takes a long time to add
using Mamba

We need to define a Mamba chain and give it our matrix of samples.

sim = Chains(nsamps,3,names=[string("0 ",i) for i = 1:3])
sim[:,:,1] = chain;

It provides a few summary statistics and additional plotting commands.

n 6_
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describe(sim)

Iterations = 1:1000
Thinning interval = 1
Chains =1
Samples per chain

1000

Empirical Posterior Estimates:

Mean SD Naive SE
B 1 -1.3160727 0.39644463 0.012536680
B 2 1.2898335 0.41625100 0.013163012
0 3 1.9096002 0.49275703 0.015582345

Quantiles:

2.5% 25.0% 50.0%
0 1 -2.21113752 -1.5457606 -1.3005457
0 2 0.61878601 0.9861015 1.2586059
0 3 1.07896344 1.5517070 1.8589660

MCSE ESS
0.0131378284 910.57957
0.0148390622 786.86037
0.0160791736 939.15702

75.0% 97.5%
-1.0509942 -0.55766567
1.5340074 2.28941198
2.2007377 3.02222935



Mamba.plot(sim[l:2:end,1:3,1],[:density],legend=true);

In [23]: plt =
draw(plt, nrow=2,ncol=2)
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In [24]: plt = Mamba.plot(sim[l:2:end,1:3,1],[:contour],legend=true);
draw(plt, nrow=2,ncol=2)
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