
Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Algortithms for the Min-Cut problem

Hongwei Jin

Department of Applied Mathematics
Illinois Insititute of Technology

April 30, 2013

Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Outline

1 Introduction
Problem Definition
Previous Works

2 Karger’s Algorithm
Contraction Algorithm
Algorithm Analysis

3 Karger-Stein Algorithm
Recursive Contraction Algorithm
Algorithm Analysis

4 Implementation

5 Conclusion
Summing up
Improvement

Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Problem Definition

Let G = (V ,E) be undirected graph with n vertices, and m edges.
We are interested in the notion of a cut in a graph.

Definition

A cut in G is a partiontion of the vertices of V into two sets S and
T , T = V (G)\S , where the edges of the cut are

(S ,T) = {uv |u ∈ S , v ∈ T , S ∩ T = V (G), uv ∈ E (G)}

where S 6= ∅ and T 6= ∅. We will refer to the number of edges in
the cut (S ,T) as the size of the cut.

Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Problem Definition

We are intersted in the problem of computing the minimum cut,
that is, the cut in the graph with minimum cardinality.

s-t minimum cut Require that the two specific vertices s and t be
on opposite sides of the cut

gloable minimum cut No such requirement.

Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Previous Works

The oldest known way to compute min-cut is to use their well
known duality with max-flow1. Now we should recall some
definition and theorem from graph theorem.

Theorem (Max-flow Min-cut Theorem (Ford and Fulkerson,1956))

In every network, the maximum value of a feasible flow eqauls the
minimum capacity of a source/sink cut.

For an example

1Lester R Ford and Delbert R Fulkerson. “Maximal flow through a
network”. In: Canadian Journal of Mathematics 8.3 (1956), pp. 399–404.

Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Previous Works

The best known sequential time bound is O(mn log(n2/m)), which
is found by Glodberg and Tarjan2 using Ford-Fulkerson algorithm.

Hao and Orlin algorithm shows how the max-flow computations
can be pipelined so that together they take no more time than a
single max-flow computation, requiring O(mn log(n2/m))3.

2Andrew V Goldberg and Robert E Tarjan. “A new approach to the
maximum-flow problem”. In: Journal of the ACM (JACM) 35.4 (1988),
pp. 921–940.

3Jianxiu Hao and James B. Orlin. “A faster algorithm for finding the
minimum cut in a directed graph”. In: J. Algorithms 17.3 (1994), pp. 424–446.

Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Previous Work

Gabow algorithm shows how to find the edge-connectivity c of a
graph in time O(cn log(n2/m)), c denotes the min cut4.

Algorithm developed by Nagamochi and Ibaraki is designed for
weighted graph, undirected graphs. They showed it can be runned
in time O(mn + n2 log(n))5.

4Harold N Gabow. “A matroid approach to finding edge connectivity and
packing arborescences”. In: Proceedings of the twenty-third annual ACM
symposium on Theory of computing. ACM. 1991, pp. 112–122.

5Hiroshi Nagamochi and Toshihide Ibaraki. “Computing edge-connectivity
in multigraphs and capacitated graphs”. In: SIAM Journal on Discrete
Mathematics 5.1 (1992), pp. 54–66.

Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Karger’s Algorithm

The fundamental concept of Karger’s Algorithm is
”contraction(edge contraction)”

Definition

In a graph G , contraction of edge e with endpoints u, v is the
replacement of u and v with single vertex whose incident edges are
the edges other than e that were incident to u or v . the resulting
graph,denoted as G/e.

Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Karger’s Algorithm

The fundamental concept of Karger’s Algorithm is
”contraction(edge contraction)”

Definition

In a graph G , contraction of edge e with endpoints u, v is the
replacement of u and v with single vertex whose incident edges are
the edges other than e that were incident to u or v . the resulting
graph,denoted as G/e.

Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Karger’s Algorithm

procedure MinCut (G = (V ,E))
while |V | > 2
choose e ∈ E uniformly and random
G → G/e
return the only cut in G

Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Karger’s Algorithm

procedure MinCut (G = (V ,E))
while |V | > 2
choose e ∈ E uniformly and random
G → G/e
return the only cut in G

Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Karger’s Algorithm

Obvervation

The size of the minimum cut in G/e is at least as large as the
minimum cut in G (as long as G/e has at least one edge). Since
any cut in G/e has a corresponding cut of the same cardinality in
G .

Obvervation

Let e1, ...en−2 be a sequence of edges in G , such that none of them
is in the minimum cut, and such that G ′ = G/e1, ...en−2 is a single
multi-edge. Then, this multi-edge correspond to the minimum cut
in G.

Obvervation

The algorithm always output a cut, and the cut is not smaller than
the minimum cut.

Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Karger’s Algorithm

Obvervation

The size of the minimum cut in G/e is at least as large as the
minimum cut in G (as long as G/e has at least one edge). Since
any cut in G/e has a corresponding cut of the same cardinality in
G .

Obvervation

Let e1, ...en−2 be a sequence of edges in G , such that none of them
is in the minimum cut, and such that G ′ = G/e1, ...en−2 is a single
multi-edge. Then, this multi-edge correspond to the minimum cut
in G.

Obvervation

The algorithm always output a cut, and the cut is not smaller than
the minimum cut.

Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Karger’s Algorithm

Obvervation

The size of the minimum cut in G/e is at least as large as the
minimum cut in G (as long as G/e has at least one edge). Since
any cut in G/e has a corresponding cut of the same cardinality in
G .

Obvervation

Let e1, ...en−2 be a sequence of edges in G , such that none of them
is in the minimum cut, and such that G ′ = G/e1, ...en−2 is a single
multi-edge. Then, this multi-edge correspond to the minimum cut
in G.

Obvervation

The algorithm always output a cut, and the cut is not smaller than
the minimum cut.

Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Algorithm Analysis

Lemma

A cut (S ,T) is output by the MinCut algorithm if and only if no
edge crossing (S ,T) is contracted by the algorithm.

Lemma

If a graph G has a minimum cut of size k , and it has n vertices,
then |E (G)| ≥ kn

2

Lemma

If we pick in random an edge e from a graph G, then with
probability at most 2/n it belong to the minimum cut.

Lemma

MinCut algorithm runs in O(n2) time.

Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Algorithm Analysis

Lemma

A cut (S ,T) is output by the MinCut algorithm if and only if no
edge crossing (S ,T) is contracted by the algorithm.

Lemma

If a graph G has a minimum cut of size k , and it has n vertices,
then |E (G)| ≥ kn

2

Lemma

If we pick in random an edge e from a graph G, then with
probability at most 2/n it belong to the minimum cut.

Lemma

MinCut algorithm runs in O(n2) time.

Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Algorithm Analysis

Lemma

A cut (S ,T) is output by the MinCut algorithm if and only if no
edge crossing (S ,T) is contracted by the algorithm.

Lemma

If a graph G has a minimum cut of size k , and it has n vertices,
then |E (G)| ≥ kn

2

Lemma

If we pick in random an edge e from a graph G, then with
probability at most 2/n it belong to the minimum cut.

Lemma

MinCut algorithm runs in O(n2) time.

Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Algorithm Analysis

Lemma

A cut (S ,T) is output by the MinCut algorithm if and only if no
edge crossing (S ,T) is contracted by the algorithm.

Lemma

If a graph G has a minimum cut of size k , and it has n vertices,
then |E (G)| ≥ kn

2

Lemma

If we pick in random an edge e from a graph G, then with
probability at most 2/n it belong to the minimum cut.

Lemma

MinCut algorithm runs in O(n2) time.

Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Algorithm Analysis

Theorem

MinCut algorithm outputs the min cut in probability P ≥ 2
n(n−1)

Proof.

Let xi be the event that edge ei is not in the minimum cut of Gi .
If the MinCut algorithm output a minimum cut, then all the event
sequence {x0, ...xn−3} will happen. Since at most with probability
2/n the edge will belong to the minimum cut. Thus we have the
probability at least

(1− 2

n
)(1− 2

n − 1
)...(1− 2

3
) = (

n − 2

n
)(

n − 3

n − 1
)...(

1

3
) =

2

n(n − 1)

Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Algorithm Analysis

Lemma

The probability that repeat MinCut algorithm T =
(n
2

)
log n times

fails to return the minimum cut is < 1
n

Proof.

The probability of failure is at most

(1− 2

n(n − 1)
)(n2) log n ≤ exp(− log n) =

1

n

Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Algorithm Analysis

Theorem

In O(n4 log n) time the minimum cut is returned with high
probability.

Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Karger-Stein Algorithm

Obvervation

As the graph get smaller, the probability to make a bad choice
increases. So, run the algorithm more times when the graph is
smaller.

procedure MinCut (G , t)
while |V | > t
choose e ∈ E uniformly and random
G → G/e
return the only cut in G

Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Karger-Stein Algorithm

Obvervation

As the graph get smaller, the probability to make a bad choice
increases. So, run the algorithm more times when the graph is
smaller.

procedure MinCut (G , t)
while |V | > t
choose e ∈ E uniformly and random
G → G/e
return the only cut in G

Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Karger-Stein Algorithm

Lemma

The probability that MinCut(G , n/
√

2) had NOT contracted the
minimum cut is at least 1/2.

Proof.

Let l = n − t = n − d1 + n/
√

2e, we will get

P[x0∩...∩xn−t] ≥
t(t − 1)

n(n − 1)
=

(d1 + n/
√

2e)(d1 + n/
√

2e − 1)

n(n − 1)
≥ 1

2

Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Karger-Stein Algorithm

They introduced a recursive way to find the minimum cut

procedure FastMinCut (G)
if |V | < 6
MinCut(G,2)
else
t = 1 + |V |/sqrt(2)
G1 = MinCut(G,t)
G2 = MinCut(G,t)
return min (FastMinCut(G1), FastMinCut(G2))

Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Algorithm Analysis

Theorem

The running time of FastMinCut(G) is O(n2 log n), where
n = |V (G)|.

Proof.

Well, we perform two calls to MinCut(G,t) which takes O(n2)
time. And then we perform two recursive calls, on the resulting
graphs. We have:

T (n) = O(n2) + 2T (
n√
2

)

The solution to this recurrence is O(n2 log n) as one can easily
verify.

Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Algorithm Analysis

Theorem

Running FastMinCut finds the minimum cut with probability larger
that 2 log 2

log n ,which can be notated as Ω(1/ log n)

The probability to succeed in the first call on G1 is the probability that
contract did not hit the minimum cut (this probability is larger than
1/2), times the probability that the algorithm succeeded on G1 in the
recursive call (those two events are independent). Thus, the probability
to succeed on the call on G1 is at least 1

2P(n√
2

). Thus, the probability to

fail on G1 is ≤ 1− 1
2P(n√

2
).

The probability to fail on both G1 and G2 is smaller than

(1− 1

2
P(

n√
(2)

))2

And thus, the probability for the algorithm to succeed is

P(n) ≥ 1− (1− 1

2
P(

n√
(2)

))2 = P(
n√
(2)

)− 1

4
(P(

n√
(2)

))2

Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Algorithm Analysis

Theorem

With high probability we can find all min cuts in the running time
of O(n2 log3 n).

Proof.

Since We know that P(n) = O(1
log n), therefore after running this

algorithm O(log2 n) times, the probability of missing a specific
min-cut is

P = (1−P(n))O(log2 n) ≤ (1− c

log n
)3 log

2 n/c ≤ exp(−3 log n) =
1

n3

And there are at most
(n
2

)
min-cuts, hence the probability of

missing any min-cut is

P[miss any min− cut] ≤
(

n

2

)
1

n3
= O(

1

n
)

. Thus the probability of success is large as n is large enough.

Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Example

Total edges: 2517
Total vertices: 200
Maximum degree: 39
Minimum degree: 20
average degree: 25
Mincut is 17

Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Karger’s Algorithm

def MinCut (graph , t) :
wh i l e l e n (graph) > t :

s t a r t = random . cho i c e (graph . key s ())
f i n i s h = random . cho i c e (graph [s t a r t])

Adding the edges from the abso rbed node :
f o r edge i n graph [f i n i s h] :

i f edge != s t a r t : # t h i s s t op s us from making a s e l f−l oop
graph [s t a r t] . append (edge)

De l e t i n g the r e f e r e n c e s to the abso rbed node
and chang ing them to the s ou r c e node :
f o r edge1 i n graph [f i n i s h] :

graph [edge1] . remove (f i n i s h)
i f edge1 != s t a r t : # t h i s s t op s us from re−add ing a l l the edges i n s t a r t .

graph [edge1] . append (s t a r t)
de l graph [f i n i s h]

Ca l c u l a t i n g and r e c o r d i n g the mincut
mincut = l e n (graph [graph . key s () [0]])
c u t s . append (mincut)

. . .

Running t imes
count = l e n (graph) ∗ l e n (graph) ∗ i n t (math . l o g (l e n (graph)))
wh i l e i < count :

graph1 = copy . deepcopy (graph)
g = MinCut (graph1 , 2)

Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Result

It gets the number of edges between vertex set S ,T is 17.

Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Karger-Stein Algorithm

For Karger-Stein Algorithm

def FastMinCut (graph) :

i f l e n (graph) < 6 :
r e t u r n MinCut (graph , 2)

e l s e :
t = 1 + i n t (l e n (graph) / math . s q r t (2))
g raph 1 = MinCut (graph , t)
g raph 2 = MinCut (graph , t)
i f l e n (g raph 1) > l e n (g raph 2) :

r e t u r n FastMinCut (g raph 2)
e l s e :

r e t u r n FastMinCut (g raph 1)

. . .

Running t imes
count = i n t (math . l o g (l e n (graph))) ∗ i n t (math . l o g (l e n (graph)))
wh i l e i < count :

graph1 = copy . deepcopy (graph)
g = FastMinCut (graph1)
i += 1

It will get the same result as Karger’s algorithm.

Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Summing up

Comparision of Karger’s algorithm and Karger-Stein algorithm.

Bound Karger algorithm Karger-Stein algorithm
Probability O(1/n2) O(1/ log n)

Cost O(n2) O(n2 log n)

Running times
(n
2

)
log n log2 n

Totol Order O(n4 log n) O(n2 log3 n)

Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Improvement

Parallel Algorithms

The parallel version of contraction algorithm RNC runs in
polylogarithmic time using n2 processors on a PRAM6.

Random Algorithems

Timo Ktzing et al. apply ”Ant colony optimization method”
can obtain the solution in expected polynomial time7.
Frank Neumann et al. apply ”Randomized Search Heuristics”
method to obtain the solution in expected polynomial time8.

6David R Karger and Clifford Stein. “A new approach to the minimum cut
problem”. In: Journal of the ACM (JACM) 43.4 (1996), pp. 601–640.

7Timo Kötzing et al. “Ant colony optimization and the minimum cut
problem”. In: Proceedings of the 12th annual conference on Genetic and
evolutionary computation. ACM. 2010, pp. 1393–1400.

8Frank Neumann, Joachim Reichel, and Martin Skutella. “Computing
minimum cuts by randomized search heuristics”. In: Algorithmica 59.3 (2011),
pp. 323–342.

Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Improvement

Parallel Algorithms

The parallel version of contraction algorithm RNC runs in
polylogarithmic time using n2 processors on a PRAM6.

Random Algorithems

Timo Ktzing et al. apply ”Ant colony optimization method”
can obtain the solution in expected polynomial time7.
Frank Neumann et al. apply ”Randomized Search Heuristics”
method to obtain the solution in expected polynomial time8.

6David R Karger and Clifford Stein. “A new approach to the minimum cut
problem”. In: Journal of the ACM (JACM) 43.4 (1996), pp. 601–640.

7Timo Kötzing et al. “Ant colony optimization and the minimum cut
problem”. In: Proceedings of the 12th annual conference on Genetic and
evolutionary computation. ACM. 2010, pp. 1393–1400.

8Frank Neumann, Joachim Reichel, and Martin Skutella. “Computing
minimum cuts by randomized search heuristics”. In: Algorithmica 59.3 (2011),
pp. 323–342.

Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Further Reading

Classical textbook: Randomized Algorithms9.

An supplementary reading material is class notes organized by
Sariel Har-Peled10.

There is a paper analysis most recent algorithm to find min-cut by
conducting experimental evaluation the relative performance of
these algorithms11.

9Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms.
Cambridge university press, 1995.

10Sariel Har-Peledx. Class notes for Randomized Algorithms. 2005.
11Chandra S Chekuri et al. “Experimental study of minimum cut algorithms”.

In: Proceedings of the eighth annual ACM-SIAM symposium on Discrete
algorithms. Society for Industrial and Applied Mathematics. 1997, pp. 324–333.

Introduction Karger’s Algorithm Karger-Stein Algorithm Implementation Conclusion

Thanks
Any Questions?

	Introduction
	Problem Definition
	Previous Works

	Karger's Algorithm
	Contraction Algorithm
	Algorithm Analysis

	Karger-Stein Algorithm
	Recursive Contraction Algorithm
	Algorithm Analysis

	Implementation
	Conclusion
	Summing up
	Improvement

