
12/15/16, 2(47 PM3-Pincell

Page 1 of 7http://localhost:8888/nbconvert/html/examples/3-Pincell.ipynb?download=false

Nuclear Reactor "Pincell" Example
In this example, we will create a simple 3D "pincell" that is common in many pressurized water reactor
geometries. It is basically a very long rectangular prism with a fuel cylinder runing through the middle of it
lengthwise. The fuel cylinder is surrounded by a thin metal cladding region, with a very thing gap region
between the fuel and the cladding. The area outside the cladding is the coolant. In this example, we will have
the outer boundaries of the problems use a reflective boundary condition. The pincell will have the following
dimensions:

Height = 300 cm

Pitch = 1.26 cm

Fuel Radius = 0.4096 cm

Inner Clad Radius = 0.4180 cm

Outer Clad Radius = 0.4750 cm

In [1]: # Load the Library
using ConstructiveSolidGeometry

1 - Define Surfaces of the Problem
Let's start with the rectangular prism boundaries (i.e., 6 planes).

A Plane is defined by a point on the surface of the plane and the plane's unit normal vector. Both are
specified in terms of a Coord object, which has three Float64 components x, y, and z corresponding to the
vector's magnitude in each 3D cartesian direction.

We can also select a boundary condition to assign to that surface. By default if no condition is specified, a
transmission boundary is used allowing for a ray to pass through the surface without changing direction.
Reflective or vacuum boundaries can also be specified by passing strings as the last argument of the
surface constructor.

12/15/16, 2(47 PM3-Pincell

Page 2 of 7http://localhost:8888/nbconvert/html/examples/3-Pincell.ipynb?download=false

In [2]: top = Plane(Coord(0.0, 0.0, 150.0), unitize(Coord(0.0, 0.0, 1.0)),
"reflective")
bot = Plane(Coord(0.0, 0.0, -150.0), unitize(Coord(0.0, 0.0, -1.0)),
"reflective")
left = Plane(Coord(-.63, 0.0, 0.0), unitize(Coord(-1.0, 0.0, 0.0)),
"reflective")
right = Plane(Coord(0.63, 0.0, 0.0), unitize(Coord(1.0, 0.0, 0.0)),
"reflective")
up = Plane(Coord(0.0, 0.63, 0.0), unitize(Coord(0.0, 1.0, 0.0)),
"reflective")
down = Plane(Coord(0.0, -0.63, 0.0), unitize(Coord(0.0, -1.0, 0.0)),
"reflective");

Now let's specify the infinite cylinder that will form the structure of the fuel, gap, and cladding regions.

An InfCylinder is created by specifying a point along the central axis, the axial direction unit vector, and a
radius. The point and directional vector are taken in the form of a Coord object. Note that these are
transmission surfaces, as no boundary condition is specified.

In [3]: clad_outer = InfCylinder(Coord(0.0, 0.0, 0.0), unitize(Coord(0.0, 0.0,
1.0)), 0.4750)
clad_inner = InfCylinder(Coord(0.0, 0.0, 0.0), unitize(Coord(0.0, 0.0,
1.0)), 0.4180)
fuel = InfCylinder(Coord(0.0, 0.0, 0.0), unitize(Coord(0.0, 0.0,
1.0)), 0.4096);

2 - Define the Halfspace Regions of the Problem
Now we want to start building up our geometry using the surfaces we just defined. Each geometrical area,
known as a Cell, is constructed logically out of any number of halfspaces and their accompanying
halfspaces. Surfaces divide all of space into two regions, positive and negative, according to the equation of
the surface. For example, the negative halfspace of a sphere is the volume inside it, while the positive
halfspace of a sphere is all space outside the sphere. We call each combination of a Surface and its
halfspace a Region.

We will begin by creating an empty array of Cell objects to store the new cells as we make them. This will
eventually hold the water, cladding, gap, and fuel cells of our geometry. We also create an empty array of
Region objects to hold the halfspace regions that define the water cell.

In [4]: cells = Array{Cell}(0)
regions = Array{Region}(0);

12/15/16, 2(47 PM3-Pincell

Page 3 of 7http://localhost:8888/nbconvert/html/examples/3-Pincell.ipynb?download=false

We begin by defining a set of regions which will be used to bound the water cell. A Region is defined as a
surface and the sign of the halfspace that defines that region of space. I.e., a Region is created by a surface
and a +1 or -1 integer. It is important to note that a plane may have two valid unit normals that are opposites
of each other, but will affect the sign of the halfspace. Keep in mind that the (+) side of a plane's halfspace is
on the side the normal points to.

In [5]: push!(regions, Region(top, -1))
push!(regions, Region(bot, -1))
push!(regions, Region(left, -1))
push!(regions, Region(right, -1))
push!(regions, Region(up, -1))
push!(regions, Region(down, -1))
push!(regions, Region(clad_outer, 1));

3 - Define a Cell Using Logical Operators
Now we define the logical manner in which we can combine the above regions to create the volume of the
cell. In this library, we can use the intersection operator ^, the union operator |, and the complement
operator ~. We define this logical operation using a Julia expression, which is wrapped by :() to indicate that
it is an expression. Here, our halfspaces are define so that we just want the simple intersection of all the
halfspace regions. The numbers we used to identify the regions are the same as their indices in the regions
array we just created.

In [6]: ex = :(1 ^ 2 ^ 3 ^ 4 ^ 5 ^ 6 ^ 7)

With that done, we can create the water cell and push it to our cells array that we made earlier. A new Cell is
made by specifying the array of regions and the logical expression that defines the cell.

In [7]: push!(cells, Cell(regions, ex));

4 - Continue Making Cells
Now we do the same thing for the gap, cladding, and water regions

Out[6]: :(1 ^ (2 ^ (3 ^ (4 ^ (5 ^ (6 ^ 7))))))

12/15/16, 2(47 PM3-Pincell

Page 4 of 7http://localhost:8888/nbconvert/html/examples/3-Pincell.ipynb?download=false

In [8]: # Make the Cladding Cell
regions = Array{Region}(0)

push!(regions, Region(top, -1))
push!(regions, Region(bot, -1))
push!(regions, Region(clad_outer, -1))
push!(regions, Region(clad_inner, 1))

ex = :(1 ^ 2 ^ 3 ^ 4)

push!(cells, Cell(regions, ex))

Make the Gap Cell
regions = Array{Region}(0)

push!(regions, Region(top, -1))
push!(regions, Region(bot, -1))
push!(regions, Region(clad_inner, -1))
push!(regions, Region(fuel, 1))

ex = :(1 ^ 2 ^ 3 ^ 4)

push!(cells, Cell(regions, ex))

Make the Fuel Cell
regions = Array{Region}(0)

push!(regions, Region(top, -1))
push!(regions, Region(bot, -1))
push!(regions, Region(fuel, -1))

ex = :(1 ^ 2 ^ 3)

push!(cells, Cell(regions, ex));

5 - Store Cells In a Geometry Object
A Geometry object holds an array of cells and a bounding Box that defines the scope of our problem. A
Box object is an axis aligned 3D box defined by its lower left (minimum) corner and its upper right
(maximum) corner.

In [9]: bounding_box = Box(Coord(-.63, -.63, -150), Coord(.63, .63, 150))

geometry = Geometry(cells, bounding_box);

12/15/16, 2(47 PM3-Pincell

Page 5 of 7http://localhost:8888/nbconvert/html/examples/3-Pincell.ipynb?download=false

6 - Plot a 2D Slice of the Geometry to Check
Correctness
To make sure that our geometry looks as intended, we will take a 2D slice of the problem space and plot it.
This can be accomplished using the function plot_geometry_2D(geometry::Geometry, view::Box,
dim::Int64) which takes a Geometry object, a view, and the pixel dimension resolution of the plot. The view
is a 2D box (in x and y) that defines what will be plotted. The z dimension should be the same for lower_left
and upper_right, and represents where the slice is taken.

In [10]: plot_geometry_2D(geometry, Box(Coord(-0.63, -0.63, 0), Coord(.63, 0.63
, 0)), 1000)

We can also highlight a single cell within the geometry by using the function
plot_cell_2D(geometry::Geometry, view::Box, dim::Int64, cell_id::Int64), which is similar in function to the
plot_geometry_2D() function, but also takes an additional argument indicating which cell to plot in black.
Below, we plot the cladding cell.

Out[10]:

12/15/16, 2(47 PM3-Pincell

Page 6 of 7http://localhost:8888/nbconvert/html/examples/3-Pincell.ipynb?download=false

In [11]: plot_cell_2D(geometry, Box(Coord(-0.63, -0.63, 0), Coord(.63, 0.63, 0)
), 1000, 2)

6 - Begin Ray Tracing
At this point, we have a complete Geometry object that we can use to perform computations with. Let's test
it by performing a standard ray trace operation. We utilize the generate_random_ray function to generate a
Ray of random direction whose origin is uniformly distributed within a bounding box.

In [12]: ray = generate_random_ray(geometry.bounding_box);

We can then find the point where the ray will intersect with next using the find_intersection function. This
function returns a new Ray object that is at the location where the intersection occurs and with the updated
direction if a reflection occured. The location has already been "nudged" slightly so that when the ray is next
evaluated it will not result in an unpredictable evaluation due to the origin still being within machine precision
distance of a surface. The function also returns the id of the surface that it intersected with as well as the
boundary criteria of that surface. This is useful as in some cases one may wish to act upon the ray when it
hits a reflective or vacuum boundary condition.

Out[11]:

12/15/16, 2(47 PM3-Pincell

Page 7 of 7http://localhost:8888/nbconvert/html/examples/3-Pincell.ipynb?download=false

In [13]: # Perform a single step of ray tracing on the geometry
new_ray, id, boundary_type = find_intersection(ray, geometry)

Compute distance travelled by the ray
distance = magnitude(new_ray.origin - ray.origin)

println("Ray moved ", distance, " [cm] before hitting a ", boundary_ty
pe, " boundary")

Ray moved 0.06004697964739698 [cm] before hitting a transmission bou
ndary

