
An Efficient MOC Linear Algebra Solver

Geoffrey Gunow

December 14, 2016

1 Introduction

The method of characteristics (MOC) is a popular method for efficiently resolving the neutron flux distribution
within a nuclear reactor. The neutron flux is necessary to compute reaction rates and hence heat production
rates. The neutron flux – which is proportional to neutron density – can be represented by the neutron transport
equation, a partial differential equation (PDE). MOC solves PDEs by laying characteristic paths or “tracks”
across the phase space. The characteristic paths are chosen so that the complicated set of PDEs simplify to
ordinary differential equations across the tracks. By laying many tracks across the problem, the problem can
be resolved. For solving the neutron transport equation this means laying tracks across the geometry of the
problem. Across these paths, the “angular neutron flux” (the neutron flux traveling across a direction) can be
analytically calculated with a simple exponential relation. Each of these tracks contribute to the neutron flux
distribution within the region they cross.

MOC is often solved using codes that do not resemble matrix equations. Instead, they resemble nested
loop structures with the inner-most loop containing an exponential evaluation[1]. Some implementations have
attempted to implement a matrix structure but have been shown to be very inefficient[2]. Because of this the
reactor physics community largely views matrix implementations of MOC as inefficient – a direct challenge to
the assertion that “everything in scientific computing comes down to linear algebra.” In this project I attempt to
provide an implementation that is cast in common linear algebra terms but also nears the efficiency of traditional
MOC methods.

2 The Neutron Transport Equation

When simulating the behavior of a nuclear reactor, it is important to have an accurate estimate of the neutron
fission reaction rates. These reaction rates produce heat rates necessary for thermal-hydraulic analysis as well
as govern transmutation and material damage of all materials within the reactor. To determine the fission rates,
the neutron behavior in the reactor is needed. Specifically, the angular neutron flux ψ is defined as

ψ(~r,E,Ω, t) = vn(~r,E,Ω, t) (1)

where n(~r,E,Ω, t) is the neutron population at position ~r, with energy E traveling in direction Ω at time t and
v is the neutron velocity which is related to the energy E by the simple kinematic relationship E = 1

2mnv
2 (for

energies relevant in reactor applications) where mn is the rest mass of a neutron. The reaction rate Rx(t, E)
for reaction x with neutrons at energy E at a given time t within a region V can be calculated as

Rx(E,Ω, t) =

∫
V

d~rΣx(~r,E,Ω, t)ψ(~r,E,Ω, t) (2)

where Σx(~r,E, t) is the “macroscopic cross-section” of type x at position ~r for neutrons of energy E traveling
in direction Ω at time t. For the purpose of this report cross-sections can be thought of as simply material
properties which describe the interaction probability of neutrons with the material. When multiplied by the
scalar neutron flux they produce reaction rates. For instance if we are concerned with the total fission reaction
rate RF within a region V of a reactor at time t (which is necessary for thermal-hydraulic analysis), we would
simply integrate the product with the fission cross-section Σf (~r,ΩE, t) over all possible neutron energies and
directions as

RF (t) =

∫ ∞
0

dE

∫
V

d~r

∫
4π

dΩ Σf (~r,E,Ω, t)ψ(~r,E,Ω, t). (3)

1



Therefore, in order to calculate any neutron reaction rate we simply need to know the neutron
angular flux distribution ψ(~r,ΩE, t). For computational reasons and convenience, these equations are almost
always simplified. Specifically, the scalar flux φ(~r,E, t) is defined as the angular neutron flux ψ integrated across
all directions as:

φ(~r,E, t) =

∫
4π

dΩψ(~r,E,Ω, t). (4)

Then the macroscopic cross-sections are approximated as being independent of neutron direction. This allows
for calculation of neutron reaction rates only using the scalar flux. In addition, a multi-group approximation
for the energy variable E is often made where it is discretized over a number of groups (often 100 for this
purpose). Within each energy group, the behavior is approximated as being constant. This leads to neutron
angular and scalar fluxes (ψ and φ) being defined for each energy group. To determine the neutron angular
and scalar flux distributions, a simple balance equation if formed using all relevant gains and losses of neutrons
within a volume, as described in Table 1 with variable definitions defined in Table 2. In this construction, all
neutron interactions are seen as losses but re-added as a source if the neutron ends up in the same phase space
(energy group, region, etc.).

Table 1: Relevant gains and losses of neutrons in neutron transport calculations

Gain Mechanism Functional Form Loss Mechanism Functional Form

Fission
χg(~r,t)

4π

G∑
g′=1

νΣf,g′(~r, t)φg′(~r, t) All interactions Σt,g(~r, t)ψg(~r,Ω, t)

In-scattering 1
4π

G∑
g′=1

Σg
′→g
s (~r, t)φg′(~r, t) Leakage Ω · ∇ψg(~r,Ω, t)

Table 2: Variables introduced in Table 1

Variable Definition
G The number of energy groups modeled in the system

Σf,g Fission cross-section for energy group g
ν The average number of neutrons produced per fission interaction
χg The probability of a fission neutron being born in group g

Σt,g Total cross-section for energy group g

Σg
′→g
s Scattering cross-section from energy group g′ to g
φg The neutron scalar flux distribution for group g
ψg The neutron angular flux distribution for group g

For this project, the focus will be on steady state solutions. Under steady-state conditions, we would like the
losses to balance the gains. However, this might not be possible for every region within the reactor. Therefore,
a factor keff is introduced which forces balance in the steady-state multi-group neutron transport equation:

Σt,g(~r)ψg(~r,Ω) + Ω · ∇ψg(~r,Ω) =
1

4π

χg(~r)
keff

G∑
g′=1

νΣf,g′(~r)φg′(~r) +

G∑
g′=1

Σg
′→g
s (~r)φg′(~r)

 . (5)

This factor keff is in fact an eigenvalue of the system. This will become more apparent in later sections.
The value of keff = 1.0 indicates a perfectly balanced or “critical” system. A value less than unity indicates
a tendency for losses to overtake gains (sub-critical) and a value greater than unity indicates a tendency for
gains to overtake losses (super-critical). It is important to note that keff is only applied to the fission term since
fission is the only neutron production term. Scattering only changes a neutron’s energy whereas fission creates
neutrons.

2



3 The Method of Characteristics

The Method of Characteristics (MOC) is a popular method to solve the steady-state multi-group neutron
transport equation. With this method, we define the neutron source Qg(~r,Ω) for group g to be

Qg(~r) =
1

4π

χg(~r)
keff

G∑
g′=1

νΣf,g′(~r)φg′(~r) +

G∑
g′=1

Σg
′→g
s (~r)φg′(~r)

 . (6)

Along a “characteristic path” which in this case is simply a straight line through the geometry, the angular flux
ψg(~r,Ω) follows a simple ordinary differential equation relationship that can be solved analytically. Then, a few
more approximations are often made to simplify the computation:

1. The geometry is discretized into “flat source regions” (FSRs). Across each FSR the source Qg is assumed
to be constant as well as all material properties and cross-sections.

2. The directional variable Ω is discretized by laying many “tracks” across the Geometry at different angles.
Each track is essentially a line through the geometry representing the angular flux along a specific direction.

With these approximations, the source in region i and group g is given by

Qi,g =
1

4π

χi,g
keff

G∑
g′=1

νΣf,i,g′φi,g′ +

G∑
g′=1

Σg
′→g
s,i φi,g′

 . (7)

Notice that now the scalar fluxes and cross sections take discrete values for a given region i rather than
having a continuous functional form. The angular fluxes traversing FSR i then follow the simple relationship

ψk,g(l) = ψk,g(0)e−Σt,i,gl +
Qi,g

Σk,i,g

(
1− e−Σt,i,gl

)
(8)

where now the angular fluxes ψk,g(l) refer to the angular flux along track k which has some starting position ~rk
and direction Ωk and l refers to the distance traversed from it’s starting position ~rk along direction Ωk.

For ease of notation we define ψk,g,s as being the outgoing flux on segment s from track k in group g that
traverses region i = Ik(s) where the segments are connected so that the outgoing angular flux from segment s
is the incoming angular flux from segment s + 1 along track k. The incoming angular flux on segment zero is
defined by the boundary conditions. For this report, all boundaries are assumed to be vacuum such that this
value is always zero.

Then using the relationship in Eq. 4, the scalar flux of the region can be estimated from each track traversing
the region. In practice, this means a quadrature is formed giving weights to each track. The weighted summation
of the scalar flux estimates leads to the expression:

φi,g =

4π
∑
k∈Vi

wklk,i sin θkψk,i,g∑
k∈Vi

wklk,i sin θk
(9)

where θk is the polar angle of track k, Vi is the volume defined by region i, li,k is the distance traversed by
track k through region i, and ψk,i,g is the average angular flux of track k in group g traversing region i can be
computed as

ψk,i,g =
1

lk,i

∫ dk,i+lk,i

dk,i

dl ψk,g(l) =
1

lk,i

[
ψk,g,s−1

Σt,i,g

(
1− e−Σt,i,glk,i

)
+
lk,iQi,g
Σt,i,g

(
1− 1− e−Σt,i,glk,i

Σt,i,glk,i

)]
(10)

where dk,i is the distance traversed along track k until it reaches region i. With this relationship, the computation
of φi,g can be simplified to

φi,g =
4π

Σt,i,g

(
Qi,g +

1

Vi

∑
k∈Vi

wk sin θk∆ψk,i,g

)
(11)

where ∆ψk,i,g = ψk,g,s−1 − ψk,g,s.

3



In practice, the first step in an MOC algorithm is to lay tracks across the geometry and assign them weights.
Next, the Geometry is discretized into regions across which the flat source approximation is applied. Then,
tracks are segmented. In this process the tracks are split into segments where each segment traverses exactly
one flat source region. Then the “transport sweep” computation begins where an initial guess of the scalar
neutron flux distribution in every region and energy group φi,g is used to determine neutron sources Qi,g. With
the approximated neutron sources, each track is traversed, calculating the current angular neutron flux ψk,g
along the track at each intersection – but not saving the values since the contribution of the track to the scalar
flux can easily be computed only using the difference between incoming and outgoing angular neutron fluxes
from the region[3]. At the very end the contribution of the neutron source to the scalar flux for each region is

added (i.e.
4πQi,g

Σt,i,g
). A description of this algorithm is shown in Algorithm 1.

Algorithm 1 Transport Sweep Algorithm

φi,g ← 0 ∀ i, g ∈ {I,G} . Initialize FSR scalar fluxes to zero
while φi,g ∀ i not converged do

for all k do . Loop over tracks
ψtemp ← 0 . Vacuum B.C.’s
for all s ∈ S(k) do . Loop over segments

for all g ∈ G do . Loop over energy groups
i← Ik(s) . Get FSR for this segment

∆ψk,i,g ←
(
ψtemp − Qi,g

Σt,i,g

)
(1− e−Σt,i,glk,i) . Compute angular flux change

φi,g ← φi,g + wk sin θk∆ψk,i,g . Increment FSR scalar flux
ψtemp ← ψtemp −∆ψk,g,s . Update track outgoing flux

end for
end for

end for
for all i ∈ I do . Loop over regions

for all g ∈ G do . Loop over energy groups
φi,g ← 4π

Vi
φi,g +

4πQi,g

Σt,i,g
. Add source contribution

end for
end for
Update keff and FSR sources Qi,g ∀ i

end while

4 Forming Matrix Equations

In order to cast MOC as a linear algebra problem, the operations performed on the angular and scalar fluxes
are cast as matrices. We consider the angular fluxes and scalar fluxes as vectors φ and Ψ respectively. The size
of φ is M and the size of Ψ is N where N >> M since there are many more angular fluxes in a problem than
scalar fluxes.

First, we define the source vector Q with components Qi,g given in Eq. 7 as

Q =
1

keff
F̂ φ+ Ŝφ (12)

where

F̂ φ =
χi,g
4π

G∑
g′=1

νΣf,i,g′φi,g′ (13)

and

Ŝφ =
χi,g
4π

G∑
g′=1

Σg
′→g
s,i φi,g′ . (14)

4



Since F̂ and Ŝ only act on scalar fluxes φ they are of size M×M . Then we consider the relationship for angular
flux variation along a track presented in Eq. 8 as

TΨ = HQ (15)

where TΨ relates the difference between outgoing angular flux ψk,g,s and the attenuation of the incoming angular
flux ψk,g,s−1 over region i as

TΨ = ψk,g,s − ψk,g,s−1e
−Σt,i,glk,i (16)

and HQ is the operation selecting the source of the traversed region i and determining its contribution to the
angular flux as

HQ =
Qi,g

Σk,i,g

(
1− e−Σt,i,glk,i

)
. (17)

Note that H is of size N ×M as it operates on scalar fluxes to produce a quantity used in computation with
angular flux computation. For each row in H there is exactly one nonzero entry corresponding to the source of
the traversed region. Matrix T is of size N ×N but very sparse. Specifically T contains ones along the diagonal
relating to the outgoing angular fluxes and an off-diagonal element −e−Σt,i,glk,i) applied to the incoming angular
fluxes.

Lastly, we need to define how the scalar fluxes are computed as a weighted summation of angular fluxes.
In Eq. 9 a relationship was given in terms of both the angular fluxes and the average angular fluxes where the
average angular fluxes are dependent on both the angular fluxes ψk,g,s and sources i,g. However, we would like
to have a relationship that is only cast in terms of angular fluxes so that it is possible to calculated scalar fluxes
from angular fluxes alone. To do this, Eq. 8 is used to eliminate Qi,g from Eq. 10 yielding the relationship

ψk,g,s =
ψk,g,s−1 − ψk,g,s

Σt,i,glk,i
+
ψk,g,s − ψk,g,s−1e

−Σt,i,glk,i

1− eΣt,i,glk,i
(18)

Used in conjunction with Eq. 9 this yields

φi,g =
4π

Vi

∑
k∈Vi

wklk,i sin θk

[
ψk,g,s−1 − ψk,g,s

Σt,i,glk,i
+
ψk,g,s − ψk,g,s−1e

−Σt,i,glk,i

1− eΣt,i,glk,i

]
(19)

which can be written in matrix form as
φ = WΨ. (20)

Note that W is size M×N since it operates on angular fluxes to produce scalar fluxes. Altogether, the eigenvalue
problem can then be written as

TΨ =
1

k
HF̂WΨ +HŜWΨ. (21)

This can be re-arranged as a generalize eigenvalue problem (of the form Ax = λBx) as

HF̂WΨ = k
(
T −HŜW

)
Ψ (22)

which of course can be re-arranged as a standard eigenvalue problem by taking an inverse as(
T −HŜW

)−1

HF̂WΨ = kΨ. (23)

5 Solving the Eigenvalue Problem

Now that the eigenvalue problem has been formed, it is possible to solve the problem with a variety of methods.
Since taking the inverse of a large matrix is infeasible, it would not be wise to try to explicitly form the matrix(
T −HŜW

)−1

HF̂W for use in a standard eigenvalue solver. However, there are many eigenvalue solvers

that can solve the generalized eigenvalue problem described in Eq. 22. Indeed, Julia contains an optimized
eigenvalue solver eigs which is capable of solving generalized eigenvalue problems. Most standard eigenvalue
solvers fundamentally rely on performing matrix-vector multiplies with the matrix of which we wish to find the

5



eigenvalues and eigenvectors. For a generalized eigenvalue solver, this matrix vector multiply is replaced with
solving a linear system.

This can clearly be seen if we look at a simple method for computing the dominant eigenvalue and eigen-
vector, the power method. This method takes advantage of the eigenvector dominating the result of repeatedly
multiplying by a matrix. This algorithms is shown in Algorithm 2. It is important to note that while a matrix
inversion is shown in the algorithm, this is not explicitly computed in the algorithm. Rather, the linear system
is solved whose solution is equivalent to the matrix-vector product shown in the algorithm.

Algorithm 2 Power Method Algorithm

Take a starting guess for Ψ
while Ψ not converged do

Ψ←
(
T −HŜW

)−1

HF̂WΨ

Normalize Ψ
end while

A caveat of the neutron transport application is that we are only concerned with the dominant eigenvalue
and the scalar fluxes associated with the dominant eigenvector. This is because scalar fluxes are used to compute
reaction rates. Therefore, while the eigenvalue solver may present a solution for Ψ, we are only concerned with
the solution φ = WΨ. Since the W is size M ×N and N >> M , the storage requirements of φ are much less
than Ψ. Indeed if it is possible to only compute the components of Ψ on-the-fly when needed with respect to
determining φ, there could be gains in computational efficiency.

This leads to the idea of source iteration. With this method the eigenvalue problem is computed more as a
fixed-point problem than a typical eigenvalue problem. We take note of the eigenvalue problem given in Eq. 21
and iteratively solve

Ψ← T−1H

(
F̂

k
Ψ + Ŝ

)
WΨ. (24)

Note that since we are concerned with arriving at the solution of φ, we are really interested in

φ←WT−1H

(
F̂

k
+ Ŝ

)
(WΨ) . (25)

which can be re-written as

φ←WT−1H

(
F̂

k
+ Ŝ

)
φ. (26)

After each iteration, we arrive at a new estimate of φ and from this updated estimate it is possible to compute
a new value for k. The new value of k is computed by forcing

1

k
F̂φ1 = C (27)

where C is some constant and 1 is the vector of ones. Therefore at each iteration k is updated by taking

k ← k
F̂φnew1

F̂ φ1
(28)

Physically, this is taking the eigenvalue k to be the ratio of fission sources between iterations. The process
continues iteratively until a stationary point is reached and the eigenvalue problem is converged. This algorithm
is detailed in Algorithm 3.

Source iteration is indeed the strategy used in standard MOC solvers. Benefiting from being entirely based
on the scalar fluxes φ, angular flux vector Ψ does not need to be explicitly stored. During a transport sweep
in the standard solver, φnew ← WT−1HQ is implicitly computed where Q is the sources formed from the
current estimate of the scalar fluxes. During the transport sweep, angular fluxes are formed as needed in the
computation associated with the elements of T .

6



Algorithm 3 Source Iteration Algorithm

Take a starting guess for φ
while φ not converged do

φnew ←WT−1H
(
F̂
k + Ŝ

)
φ

Normalize φnew

Compute k ← k F̂φnew

F̂φ

φ← φnew

end while

Trying to mimic this strategy in matrix form, an MOCMatrix type is created which defines how to perform
matrix-vector multiplication with the matrix WT−1H wherein matrix elements are computed on-the-fly by
forming the relevant elements of W , T , and H individually on-the-fly with some common terms saved to reduce
computation. This leads to a large reduction in storage since neither the W , T , nor H matrices need to be
stored explicitly. The idea is very similar to the SymmetricArrow matrix studied in homework 2 for this class.
By taking advantage of matrix structure, both storage and computation can be greatly reduced.

6 The MOC.jl Package

To do this work, I created the MOC.jl package. This package contains all the up-front computation required
by the MOC method including geometry descriptions, ray tracing, material definitions, track generation, and
quadrature sets. However, at the moment it is limited to only uniform grid geometries with vacuum boundary
conditions for two dimensional problems and quadrature sets are limited to a maximum of three polar angles –
although experience has shown three polar angles to be sufficient to converge most neutron transport problems.
The package also contains various eigenvalue solver options:

1. StandardSolver: An eigenvalue solver that computes the solution with source iteration by iterating over
tracks in the usual fashion with minimal storage (as presented in Algorithm 1).

2. SparseSolver: An eigenvalue solver that explicitly creates the aforementioned matrices and saves them
in sparse form. It then uses these matrices to compute the solution using either: Julia’s eigs solver, power
method, or source iteration.

3. MOCMatrixSolver: An eigenvalue solver that forms an MOCMatrix for use in source iteration and does not
explicitly store angular fluxes. While similar in structure to StandardSolver, it computes the components
of each necessary matrix element explicitly on-the-fly whereas StandardSovler takes advantage of certain
cancellations that occur in the computation.

7 Results and Analysis

The various solvers implemented in Julia were tested on a simple benchmark problem. The benchmark problem
was chosen to be a pure UO2 fuel with cross-sections from the C5G7 benchmark. The number of azimuthal
and polar angles used in the quadrature and the problem discretization were varied yielding several different
problem complexities. The computational times required to solve these problems of various complexities or sizes
are shown in Fig. 1.

Note that the best solver is the StandardSolver followed by the MOCMatrixSolver. It is important to note
that it should be possible to make the MOCMatrixSolver as efficient as the StandardSolver by making the same
simplifications and cancellation of terms in the computation. However, in that case the computation would be
virtually the same and the MOCMatrixSolver would merely be copying the same code as the StandardSolver,
just calling the transport sweep a matrix multiplication. For this reason, the choice was made to form each
matrix term individually in the MOCMatrixSolver without any cancellations in order to quantify the performance
benefit of the cancellations and simplifications commonly employed in efficient MOC solvers.

The worst performing solver is the SparseSolver which explicitly computes and stores all matrix terms in
standard sparse format. Of the eigenvalue solver options, power method performed the worst. The Julia eigs

7



Figure 1: Computational time for various solvers to solve test problems of UO2 fuel with vacuum boundaries.

function showed much better performance, as expected, since the algorithms it employs should be strictly better
than power method for almost all use cases.

However, source iteration proved to be better than both of the more standard eigenvalue methods. To
understand the reasons for this, we consider the computation performed at each iteration. First, note that
source iteration works directly with φ which is size M whereas both power and eigs aim to calculate the
dominant eigenvector Ψ which is of length N and then from that solution calculate φ = WΨ.

In addition to directly solving for φ, source iteration also benefits from an easier linear system to solve at
each iteration. Consider that source iteration solves the system

φ←WT−1H

(
F̂

k
+ Ŝ

)
φ (29)

whereas both power method and eigs solve the linear system

Ψ←
(
T −HŜW

)−1

HF̂WΨ. (30)

The complexity of solving linear systems depends strongly on the structure of the matrix being implicitly
inverted. For source iteration that matrix is T whereas for power method and eigs that matrix is T −HŜW .
A comparison of the structure of these two matrices is shown in Fig. 2.

The structure of T is extremely simple. As noted early it is just a diagonal matrix with the potential for
an off-diagonal element at each row. It is also lower triangular. These features make solving the linear system
almost trivial. In contrast, we see that T −HŜW has a much more complicated structure.

8



(a) T (b) T −HŜW

Figure 2: A comparison of the matrix being implicitly inverted in source iteration (T ) and the matrix being
implicitly inverted in power method and eigs (T −HŜW )

This explanation is reinforced by comparing source iteration with power method. First, we look at the
iteration count of both the methods. This is shown in Fig. 3. Although power method was shown to be far less
computationally efficient, it is able to reach convergence in far fewer iterations.

Figure 3: Required iterations for power method and source iteration to solve test problems of UO2 fuel with
vacuum boundaries.

This means that the discrepancy in run time must be accounted for by increased computational work at
each iteration. This makes physical sense as power method is essentially using the updated guess of the flux
to compute the scattering source whereas source iteration uses the flux from the previous iteration to compute
the scattering source, essentially lagging the scattering source term. While using an updated scattering source
requires fewer iterations, it is easy to see why it would be computationally cumbersome – especially when
imagining a sweeping algorithm such as that used in the StandardSolver which uses the updated flux to
compute the scattering source. The source iteration also seems to make more physical sense for the method
of characteristics since all source terms are lagged whereas the power method and similarly eigs only lag the

9



fission source terms.
Lastly, it was noted previously that whenever we solve for the scalar flux φ with source iteration, a transport

sweep is conducted that implicitly multiplies the neutron source Q by WT−1H at each iteration. If this matrix
were formed explicitly, it would be only size M ×M even though the internal matrices have some dimensions of
length N . Therefore, if it were simple to explicitly compute the matrix WT−1H, each iteration would just be a
simple matrix-vector product with an M ×M matrix, greatly reducing the computational cost. The structure
of WT−1H is shown in Fig. 4.

Figure 4: Structure of the WT−1H matrix for a 5× 5 mesh of UO2 fuel with C5G7 cross-sections.

This structure seems rather simple. The matrix is reasonably sparse and of greatly reduced size when
compared with other matrices in this application (for example T ). However, explicitly computing WT−1H is
far more computationally expensive than solving the eigenvalue problem itself, making this strategy infeasible.

8 Conclusion

In this project, I was able to form a variety of solvers that were able to solve the neutron transport equation.
These solvers were created using entirely Julia code. The best performing solver was the standard MOC solver,
mimicking the algorithm used by many existing MOC solvers. While this solver does not seem to resemble a
matrix solver, I discovered in this project that the transport sweep – which is the fundamental component in
the solver – actually solves matrix-multiplication with the matrix WT−1H in an efficient manner. This matrix-
vector multiplication arises from the source iteration solution to the eigenvalue problem which is more efficient
than competing methods due to the inner linear solve being far easier to compute due to matrix structure. In
addition using this method allows the solver to operate largely on reduced dimensionality since it is yields inputs
and outputs which only depend on the new estimate of scalar fluxes at each iteration.

References

[1] William Boyd, Samuel Shaner, Lulu Li, Benoit Forget, and Kord Smith. The OpenMOC Method of Char-
acteristics Neutral Particle Transport Code. Annals of Nuclear Energy, 2014.

[2] Abel Marin-lafleche, Micheal A Smith, and Changho Lee. PROTEUS-MOC : A 3D Deterministic Solver
Incorporating 2D Method of Characteristics. pages 2759–2770, 2013.

[3] W. Boyd. Massively Parallel Algorithms for Method of Characteristics Neutral Particle Transport on Shared
Memory Computer Architectures. M.S. Thesis, Massachusetts Institute of Technology, Department of Nu-
clear Science and Engineering (2014).

10


