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1 Problem statement

The focus of this project is to leverage the power of Julia and parallel computing to more efficiently solve
large-scale 3D finite element ocean equations, augmenting a a pre-existing research code. I omit the details of
the Hybridizable Discontinuous Galerkin (HDG) scheme used to solve these equations; the interested reader
may consult [3]. The important background to the problem can be summarized as:

1. The existing code is written entirely in python.

2. Profiling at the start of the project revealed that the memory and speed bottleneck of the code is due
to solving a large linear system during time marching, as is typical in finite element schemes.

3. The pre-existing code solves these linear systems using an LU factorization routine called from scipy.

4. We would like to do better, in terms of both memory and computation time.

2 LU factorization and memory limitations

For 3D finite element problems, node memory becomes a limiting factor in computation when LU factor-
ization is used as a solution method for the global linear solve. This is because in memory, a sparse linear
system will generally contain O (n) entries, whereas an LU factorization may be dense, requiring storage of
O
(
n2
)

entries, without special treatment. For the purposes of benchmarking, we solve a representative 3D
finite element PDE (Advection-diffusion-reaction equation, see eq. (1))1. Figure 1 depicts the benchmarking
results of the HDG solver, run on a single compute node. In this case, the grid resolution (number of degrees
of freedom) of the 3D problem was increased until the compute node was unable to meet the memory require-
ments of the problem, which ended the test. We can glean from the figure that the memory requirements
can make such problems intractable far before computation time does so. Note that the last successful test
before memory failure takes less than 3 hours to complete, well within the realm of acceptable comuputation
time. Further, we see that as the linear system grows, we have that the LU factorization begins to dominate
the computation time, compared with the nominal 10 timesteps, each of which applied the factorized matrix
in order to solve the global system in the benchmarking problem.

∂φ

∂t
= ∇ · (µ∇φ)−∇ · (vφ) +R (1)

Furthermore, for problems in which the geometry (finite element mesh) is unsteady in time, a linear solve is
necessary at every timestep, and therefore an LU factorization is not needed. However, direct linear solves will
still require storage of O

(
n2
)

entries. Therefore, the solution of large-scale ocean problems necessitates the

1The primary motivation for solving an ADR equation rather than the incompressible Navier-Stokes equations is that solving
the INS uses a projection method to decouple the pressure and velocity solves, leading to a series of linear systems, which must
be solved in a particular order. The benchmarking of such a system is unnecessarily complicated, so we use an ADR equation.
It is important to note that all the methods developed herein can be immediately used instead to solve the INS for ocean
problems.
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Figure 1: LU factorization as a bottleneck, 16 GB node

use of iterative solvers for the global linear system. For 3D problems so large that the memory requirements
exceed that of even a high-performance compute node, the linear system can not be stored in its entirety,
and the iterative solution must be computed in a matrix-free manner, and ideally, parallelized manner.

3 Linking a Python code to Julia

4 Efficiency and performance of linear solvers

4.1 boundary treatment

The entries corresponding to the dirichlet boundary conditions in the global flux matrix ‘break’ the symmetric
positive definite quality of the global flux matrix. It is computationally attractive to formulate a mode of
solution which retains the SPD quality, so that conjugate gradient methods can be applied. It turns out that
it is very important to take advantage of this SPD information, since our results indicate that more general
iterative solvers perform much worse. In some sense, we have the following block structure:

A =

[
A∗ D
0 I

]
,

[
A∗ D
0 I

] [
λ∗

λD

]
=

[
b∗

bD

]
(2)

In principle, we can simply solve:

A∗λ∗ +DλD = b∗

IλD = bD

}
⇒ A∗λ∗ = b∗ −Dbd (3)

which is a smaller linear system, but also has the added benefit that A∗ is SPD. This follows from the
bilinearity and coercivity of the diffusion operator in equation (1. In principle, this rearrangement is much
more complicated, since A does not start in the block structure as written above, see 2(a). I will refer to this
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(a) after mk A (b) Dirichlet data removed

Figure 2: Global flux matrix

problem as ‘compressing’ the global matrix. Ultimately, we wish instaead to solve the ‘compressed’ linear
system, see ,figure 2(b). Some approaches to handle this:

4.1.1 brute force compression and solution of resulting linear system

The following is an algorithm which keeps the sparse representation of A, b is the RHS, and r is a list
containing the rows / columns to remove formed during the existing mk A routine. N is the size of A.

Algorithm 1 Communicating Dirichlet data to RHS

1: b∗ ← b
2: for i ∈ r
3: rC ← A[:, i] . index into column of A
4: rC[i]← 0
5: b∗ ← b∗ − bi ∗ rC
6: end for

At the end of this algorithm, we have the original A matrix as in fig 2(a), but the right hand side now
contains the correct data for the compressed linear system in the non-Dirichlet indicies, and the unmodified
solution in the Dirichlet entries. As an aside, efficient implementations should operate on this vector directly
to avoid having to copy the boundary data after the linear solve. The next step is to remove all of the data
corresponding to Dirichlet rows and columns from A. We can take advantage of Julia’s flexibility to write a
compression method for the SparseMatrixCSC type.
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Figure 3: Inefficiency of compressing a sparse matrix

Algorithm 2 Brute force removal of Dirichlet rows and columns from A (sparse, CSC)

1: for i ∈ r
2: select range of column pointers corresponding to column i
3: delete column pointers
4: decrement remaining column pointers
5: for k ∈ [1, N− columns removed]
6: find rows greater than i . rows stored sorted, so this is a binary search
7: remove found rows
8: downshift matrix values by rows removed
9: end for

10: end for

Note that this algorithm is not readily parallelizable, since all workers would be operating on the same
data structure, resulting in a race condition. Coordination between workers would also be inefficient due to
having to downshift the data, affecting any operation ‘upstream’. Overall, compressing the sparse matrix is
iniefficient. Profiling demonstrates that the large number of calls to deleteat! are expensive (even more so
than the binary search) when “compressing” the CSC matrix, since they shift every subsequent element of
the array down. This leads to enormous memory allocations, and is extremely inefficient in terms of space
and computational time; this is clear from the benchmarking test in figure 3.

4.1.2 SPD solve without matrix compression

It is possible to leverage the multiple dispatch design of Julia in order to avoid this inefficiency. Instead of
performing any type of matrix compression, we can simply leave the matrix as is, move the boundary informa-
tion to the right hand side, and perform an iterative solve on the non-boundary rows and columns. In other
words, we ignore the entries which break the symmetry. Namely, we can define a new HollowSparseMatrix
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Figure 4: Performance until LU memory limit, 16 GB node

immutable type that takes the original matrix data, along with a list of rows/columns on which it should
operate. We overload the * operator for matrix-vector multiplication to reflect this change, and can call the
same CG routine that we would call on an SPD matrix. Note the power of multiple dispatch here! Since
a CG method needs only to be able to evaluate a residual and to compute the linear transformation A(x),
as long as each is defined for another representation of the linear transformation, we can use the same CG
code. In figures 4 and 5, we can see that performance of the CG solve is reasonable once the inefficient
compression technique is no longer needed.

Figures 4 and 5 represent a series of benchmarking runs, on a small and large compute node repsectively.
The runs ended when the node was unable to accomodate the memory requirements of the LU factorization.
On both the smaller and larger, the iterative methods perform better than the LU computation in both
space and time as the problem size grows. Upon first glance, it also seems that GM-RES outperforms CG.
Figure 6 demontrates this to not be the case; the GM-RES does not converge to the specified tolerance. It
is somewhat vindicating that the CG method performs better, given the effort to preserve the SPD quality
of the global matrix. Further, the iterative methods continue to perform well up to about 108 DOF, at
which point, the initialization of the python code (not even the linear solve!) becomes the limiting factor in
terms of memory. Even so, the switch the iterative methods allows consideration of problems of 2 orders of
magnitude higher than previously.

4.2 a brief aside on preconditioners

Choosing a preconditioning matrix for a linear system is more of an art than a science, and goes beyond
the scope of this project. However, since implementation of some basic preconditioners was straightforward,
figures 7(a) and 7(b) show the distribution of iterations and convergence times sampled over 1000 time steps.
The results illustrate the capricious nature of preconditioners: although the SOR preconditioner converges
in the fewest number of iterations, it is by far the slowest, due to the additional cost of multiplication with
a non-diagonal matrix per iteration.
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Figure 5: Performance until LU memory limit, 256 GB node
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4.3 multi-core paralellization of the linear solver

We can make use of Julia’s native SharedArray type, along with corresponding operator overloading with
a parallel implementation of the HollowSparseMatrix type in order to distribute the matrix multiplication
computations over the available cores of a given compute node. Of course, this initial setup involves some
computational overhead, and we see in figure 7 see that utilizing a multi-core approach is only performant
for ADR problems involving greater than 105 degrees of freedom. We are most interested in performance
of the CG solver, given that the GMRES solver exhibited undesirable convergence properties as discussed
earlier. It is worth noting that the scipy LU factorization and substitution routines which are discussed
earlier (and were benchmarked against serial iterative methods) already make use of multiple cores via the
BLAS libraries called underneath the python implementation.

This result was the main focus of this work and indeed allows our research to consider orders of magnitude
larger 3D problems than previously possible.
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Figure 7: Comparison of single core and multi-core solves, 24 cores
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