
Accelerated Convolutions for Efficient Time to Contact
Computation in Julia

Alexander Amini

18.337: Final Project
Massachusetts Institute of Technology, Cambridge, MA

Abstract— Convolutions have long been regarded
as fundamental to applied mathematics, physics and
engineering. Their mathematical elegance allows for
common tasks such as numerical differentiation to
be computed efficiently on large data sets. Efficient
computation of convolutions is critical to artificial
intelligence in real-time applications, like machine
vision, where convolutions must be continuously and
efficiently computed on tens to hundreds of kilobytes
per second. In this paper, we explore how convolutions
are used in fundamental machine vision applications.
We present an accelerated n-dimensional convolution
package in the high performance computing language,
Julia, and demonstrate its efficacy in solving the
time to contact problem for machine vision. Results
are measured against synthetically generated videos
and quantitatively assessed according to their mean
squared error from the ground truth. We achieve
over an order of magnitude decrease in compute time
and allocated memory for comparable machine vision
applications. All code is packaged and integrated into
the official Julia Package Manager to be used in
various other scenarios.

I. INTRODUCTION

One of the most important concepts in machine
vision [1], signal processing [2], and Fourier theory
[3] is that of convolutions. Convolutions are used to
compute discrete derivatives in a variety of industrial
applications, such as computer graphics and geom-
etry processing. Additionally, with the advent of
deep learning, convolutions have gained a resurgence
of prominence, as Convolutional Neural Networks
(CNNs) are used to compute optimized feature maps.
Thus, because of their wide applicability, mathemat-
ical elegance, and fundamental symmetry between
time and frequency domains, convolutions are an es-
sential part of any mathematical computing platform.

Two critical machine vision computations are time
to contact (TTC) and focus of expansion (FOE).
Imagine an autonomous vehicle, with a camera
mounted on its front, approaching a wall. The time
to contact (TTC) is defined as the amount of time
that would elapse before the optical center reaches
the surface being viewed [1]. This problem can
intuitively be thought of as: how much time will pass
before the car collides with the wall? On the other
hand, the focus of expansion (FOE) will determine
the precise location on the image plane that the
camera is approaching (i.e., the point that would
ultimately collide first). TTC and FOE solutions
are critical for many robotic systems since they
provide a rough safety control capability, based on
continuously avoiding collision with objects around
it.

The problem of accurately determining the TTC
is particularly difficult because we are often not
given any information of speed, or size of objects
in our environment. While the FOE can be coarsely
estimated by looking for minima of the directional
derivatives from the video sequence, this would not
give us any information relating to velocity (and
therefore, the TTC).

In the following sections, this paper will outline
the formulation of discrete derivatives and convolu-
tions, specifically in the context of machine vision
and time to contact. We then present our accelerated
convolution approach (FastConv) and its implemen-
tation in Julia, a dynamic programming language
for high performance computing environments [4].
We evaluate the performance of FastConv against
the existing Julia machine vision toolset and other
state-of-the-art tools. We further assess FastConv
specifically for the TTC problem by implementing

a multi-scale approach to TTC, and evaluate the
performance against synthetically generated video
data. We show that the convolution operation can
be accelerated by an order of magnitude to decrease
compute time and allocated memory for comparable
machine vision applications over 10 times.

II. DISCRETE DERIVATIVES

Most fundamental machine vision techniques such
as time to contact [1], optical flow [5], and view
synthesis [6] perform several convolutions on every
iteration. In the context of robotics, these techniques
are performed on a continuous video stream sampled
somewhere around the range of 10 − 30 Hz. Since
these computations need to be done at such a high
frequency, it is imperative for the programming
language to perform these convolutions extremely
quickly.

A fundamental part of solving the problem of
TTC is computing the partial derivatives Ex, Ey, and
Et. Since our images are sampled under a discrete
interval (determined by the number of pixels in each
dimension), it is impossible for us to compute these
as continuous derivatives. Instead, we need a way to
estimate the derivative in each of these directions.

Consider a 2-dimensional (2D) image E(x, y)
with a single vertical edge. Since an edge is an abrupt
change in brightness intensity it is the most common
approach to determining meaningful discontinuities.
We would expect a large magnitude impulse at the
x location of the edge when computing the partial
derivative with respect to x (ie. Ex).

We state the partial derivative of an image E(x, y)
with respect to x as: ∂E∂x = Ex. Similarly the deriva-
tive with respect to y can be written as: ∂E

∂y = Ey.
Subsequently, we define the magnitude and angle of
the edge as:

|E| = Emag =
√
E2
x + E2

y (1)

θ = Edir = tan−1

(
Ey
Ex

)
(2)

Here, |E| represents the sum of squares magnitude
of the gradient at every pixel, and θ is the cor-
responding direction of the gradient. The direction
is estimated by using four quadrant inverse tangent

with the two directional derivatives. Note that θ ∈
[−π, π]. Figure 1 gives an example of taking a single
image (eg. of a bicycle) and computing the resulting
partial derivatives, Ex (1B) and Ey (1C). According
to equation (1) the magnitude is computed in 1D.
Finally, the directions of the derivatives are computed
and visualized in 1E, where the color represents
the direction (equation 2) of the edge at that point
(following the color wheel on the top right corner).
For example, a pixel colored red indicates a gradient
at that location with angle of −π2 .

These partial derivatives are computed according
to the limit definition of a derivative:

∂E(x, y)

∂x
= lim

∆x→0

E(x+ ∆x, y)− E(x, y)

∆x

For images, a crude estimate would be to say
that min ∆x = 1 since the smallest unit of measure
in our image, without going to the sub-pixel scale,
is a single pixel. Which in turn, would allow us
to conclude that the derivative estimate in the x
direction for our image could be approximated by:

∂E(x, y)

∂x
= E(x+ 1, y)− E(x, y)

This operation amounts to applying a two cell
mask k = [−1 , 1], in turn, at every position x
along column y, multiplying each masked element
by the mask entry, and summing the result. In the
discrete setting, this replicates a common signal pro-
cessing calculation: convolutions. That is, directional
derivatives (in any direction) can be approximated by
modifying the kernel, k, above.

More specifically, given an image, E, of size
(m,n) and kernel, k, we can define the spatial
convolution (⊗) as follows:

(E ⊗ k)(x, y) =

m−1∑
i=0

n−1∑
j=0

E(x+ i, y+ j)k(i, j) (3)

Figure 2 gives a visual outline of how a con-
volution of an image with a 3 × 3 kernel might
be performed. The kernel is applied as a sliding
window that spans all possible areas of the input
image, at each point the element-wise multiplication

is computed and summed, which is stored in the
output at the location highlighted in purple.

Fig. 2. An illustration of an input image convolved with a 3
kernel to produce an output at the center of the kernel.

Now, in order to approximate the partial derivative
of E along the x axis (Ex) for example, we can let:

k =
1

2

[
−1 1
−1 1

]
To find Ey, we use the transpose of the previous
kernel. In the next section we detail some of most
common kernels that have been developed over the
years for the task of edge detection.

III. CONVOLUTIONS

Different variations of these kernels have been
studied over the years to accomplish various tasks
in machine vision [7]. In this section we explore
three pervasive kernels, which were developed in the
context of computing image derivatives. Each kernel
structure has various benefits and disadvantages as-
sociated to it.

Figure 3 shows a visual example of the four
different types of kernels that have been developed
for edge detection through first derivatives.

Fig. 3. A visual description of 2D image edge detection
kernels. First and second dimensions are the top and bottom
rows respectively. The different kernels are: 2× 2 Roberts (A),
2× 2 Prewitt (B), 3× 3 Prewitt (C), and 3× 3 Sobel (D).

A. Roberts

The Roberts kernel (3A) uses diagonal edge gra-
dients and is susceptible to fluctuations. This method
gives no information about edge orientation and is
actually computing the gradient at the center of a
group of 4-neighbor pixels. Therefore, the resulting
coordinate system of the output derivatives is 45
degrees away from the original Cartesian coordinate
system.

B. Prewitt

The Prewitt 2 × 2 kernel (3B) tries to estab-
lish a Cartesian coordinate system by defining two

Fig. 1. Gradient computations of a single image E(x, y) (A). Directional partial derivatives are computed along the x (B) and y
(C) axes, along with the absolute magnitude (D). Directions of the gradient are visualized according to a circular colorbar ranging
from −π to π (top right).

derivates that follow the x and y axes. However, there
is still a slight ambiguity with this kernel. Since the
kernel is of size 2× 2 (like Roberts), the gradient is
computed at the center of the 4 pixels. Therefore, we
do not know precisely where the result pixel should
be stored (ie. it is between two pixels).

Conversely, the Prewitt 3×3 kernel (3C) addresses
this issue through a well defined center (ie. at the
middle pixel). Due to the nature of the kernel, it is
very simple to implement but also very sensitive to
noise fluctuations.

C. Sobel

Finally, the Sobel 3×3 kernel (3D) is very similar
to Prewitt kernels in that it has a well defined center.
However, it applies twice the weight around the
center pixels. This makes the Sobel kernel more
sensitive to diagonal edges than the previous Prewitt
operators.

IV. ACCELERATING CONVOLUTIONS

In this section, we will present a method to
speed up the computation of convolutions in a high-
performance computing language, Julia [4]. We uti-
lize a key Julia feature of multiple dispatch, in which
functions can be defined and overloaded for different
combinations of argument types. Additionally, we
extend our convolution algorithm to handle arbitrary
n−dimensional convolutions, which is not supported
by the current Julia implementation. N− dimen-
sional convolutions are implemented through auto-
matic code generation of higher order convolution
functions using Cartesian.jl [8].

A. Optimization for Vision

Applications of convolutions in machine vision,
image processing, and deep learning are unique in
the sense that they utilize relatively small kernel sizes
through convolution. Previous sections provided ex-
amples of computing first order derivatives with 2×2
and 3 × 3 kernels, each containing a total of 4 and
9 pixels respectively. Such kernels are many orders
of magnitude smaller than the size of the image. For
example, today, it is standard for even the low-end
mobile devices to possess cameras which capture 1
megapixel (106 pixels) quality images. Thus, a 3×3

Sobel kernel is 106

9 ≈ 105 times smaller than a 1
megapixel image.

Convolutions in deep learning applications exhibit
similar properties. That is, CNNs are used in a va-
riety of machine learning tasks, including character
recognition [9], autonomous vehicle control [10], and
medical drug delivery [11]. The convolution kernels
leveraged in these networks (as described above for
image processing) are relatively very small, ranging
from 2× 2 to 5× 5.

B. Convolutions in Julia

Historically, convolutions have been conceptual-
ized many different ways. Although Equation 3 gives
us one representation of convolutions by computing
two summations, there have also been other represen-
tations of convolutions built upon notions developed
in fundamental signal processing. For example, the
Convolutional Theorem [12] states that convolutions
in the time domain are equivalent to element-wise
multiplication in the frequency domain, and vice
versa. This theorem can be summarized as follows:

E ⊗ k = F−1
(
F(E) ∗ F(k)

)
(4)

where F is the Fast Fourier Transformation (FFT),
and F−1 is the Inverse Fast Fourier Transformation
(IFFT). In other words, the image is converted into
the frequency domain (using FFT), multiply, and
convert back to the time domain (using the IFFT).
Complexity analysis of this algorithm reveals that it
exhibits O(n log n) asymptotic behavior (where E
and k have n samples each). Theoretically, this in-
dicates the FFT approach to computing convolutions
would out-perform the direct summation method out-
lined in equation 3, which has complexity O(n2). For
these reasons: (1) compact implementation and (2)
lower computational complexity, this approach was
chosen for the existing convolution implementation
in the Julia software package.

However, while the FFT/IFFT approach to com-
puting convolutions does exhibit low asymptotic
convergence, in many practical machine learning
and machine vision scenarios, a far more efficient
approach can be provided. This is due to the fact
that, when using kernels that are orders of magnitude
smaller than the raw signal (i.e., image), the over-
head of the FFT/IFFT overshadows any efficiency

advantages gained through the transformation to the
frequency domain. Thus, to take advantage of the
small kernels leveraged by machine vision and ma-
chine learning, this study implements a new direct
method of convolution computation and evaluates
performance results in these settings.

The goal of our implementation is to develop
a novel, hybrid implementation, which exploits the
small kernel sizes where possible for low complexity
computation, and leverages the existing FFT ap-
proach only when dealing with large kernel sizes
(which does not occur frequently). Furthermore, un-
like many other comparable high performance com-
puting languages, Julia does not have built-in func-
tionality to compute n-dimensional convolutions. We
will address this gap by extending our algorithms
into an arbitrary n-dimensional implementation to
handle a much larger range of applications.

This study implements and evaluates an algorithm,
FastConv, in Julia that aims to accomplish the goals
outlined in Figure 4.

Fig. 4. A conceptual outline of the benefits of the imple-
mentation developed in this paper (FastConv), to the current
implementation that exists within Julia.

C. FastConv

Due to the high overhead in converting a signal
into the frequency domain, the algorithm starts by
evaluating the kernel size. If the kernel size is
relatively small, the convolution will be performed in
a direct manner (ie. via equation 3 for 2D); otherwise
the existing FFT method will be used. Kernel size
checking incurs a small increase in computation, but
avoids requiring the user to assess which method to
use, and is dwarfed by the computations required for
both the direct and the FFT methods.

FastConv [13] employs use of existing base Ju-
lia features (such as multiple dispatch, efficient
memory allocations, and macros to generate multi-
dimensional code). The package, which has been
added to the official Julia Package Manager, achieves

over an order of magnitude speedup for small kernel
applications (such as machine learning and machine
vision), e.g., when convolving a standard sized image
with a 3 × 3 kernel. By allocating the memory in
a helper function, the algorithm also improves effi-
ciency by reusing memory within the actual convolu-
tion function. Additionally, we use @inbounds to
eliminate array bounds checking, further increasing
performance speedups.

Our implementation covers a wide variety of
signal types (real, complex, boolean, irrational, un-
signed integers, etc) through native Julia multiple
dispatch. Furthermore, we utilize the Cartesian pack-
age to create auto generative code that can compute
convolutions in any dimension. The process by the
compiler is as follows:

1) The dimensionality of the inputs is identified
(let’s say both inputs are of dimension k

2) The k-dimensional convolution code is gener-
ated (if it has never been before)

3) The inputs are processed by the auto-generated
code.

D. Benchmarking

To compare the performance of select program-
ming languages at computing convolutions, a simple
benchmark, designed to represent machine vision
applications, was conducted. A random 1MP image
was convolved with 4 different sized kernels. Fig-
ure 5 shows the time taken to convolve these two
signals using the standard convolution function in
three different computing platforms (conv in Julia,
Matlab, Octave or numpy.convolve in Python).

The number of elements present in the input image
was maintained for each test (ie. only the language
and kernel size was varied). Since Julia does not
support for convolutions of dimension three and
above, performance was compared to Julia only for
1D and 2D inputs.

FastConv achieved well over an order of magni-
tude speedup over the convolution function in the
current Julia version (v0.5), and performed compa-
rably to Python, Matlab and Octave implementations
for these kernels. Additionally, we evaluated our
algorithm against the FFT based approach for kernels
of larger size. Figure 6 plots the time taken to
compute the convolution across varying kernel sizes

2 3 4 5

Kernel Length

0

1

2

3

4

5
T

im
e
 (

lin
e
a
r)

×10 -3 1D convolutions

Julia v0.5 Octave Python Matlab FastConv

2 3 4 5

Kernel Length

10 -3

10 -2

10 -1

10 0

T
im

e
 (

lo
g
)

2D convolutions

Fig. 5. Time taken to compute E ⊗ k across three different
computing platforms (Julia, Matlab, and Python). For each
language the built in convolution function was used. Note that
Julia does not have base support for convolutions of arbitrary
dimension (above 2D).

for both the pre-exsiting Julia implementation and
FastConv.

0 10 20 30 40 50

Kernel Size

0

2

4

6

8

C
o

m
p

u
te

 T
im

e

×10 -3

Common MV

FFT

Direct

Fig. 6. Convolution computation time for both the direct (red)
and FFT (blue) method across varying kernel sizes. FastConv
uses a threshold on the kernel size to determine when compute
according to either method. Frequently used machine vision
kernel sizes (as described in the main text) are highlighted in
blue background.

For the majority of machine vision (MV) ap-
plications (shaded region), FastConv significantly
outperforms the FFT implementation. As the kernel
size increases (kernel size ≈ 30) it becomes more
efficient to use an FFT based convolution algorithm.
Therefore, in the published package of FastConv
we utilize the best of both worlds. When below
this threshold (determined experimentally), which
is common in the realm of machine vision, the

algorithm automatically uses the direct method of
computing convolutions. However, for large kernel
sizes, the algorithm switches to use the FFT based
implementation.

V. TIME TO CONTACT

In order to test how FastConv might be used in
the context of machine vision, we also implemented
the time to contact algorithm in Julia. This section
will briefly outline the details of the algorithm we
follow to determine precisely the focus of expansion
(FOE) and resulting time to contact (at the FOE) [1].

A. Formulation

We can define the brightness of an image sequence
over time as E(x, y, t), where x and y are Cartesian
coordinates across the image and t is the tempo-
ral operator. For example, E(x, y, 0) is the image
E(x, y) at time t = 0. Figure 7, illustrates how this
sequence can be visually represented as “stacking”
images on top of one another to capture the temporal
variability. Studying how a certain pixel, or group of
pixels, vary over a temporal slice of the dataset can
give us insights into optical flow and time to contact.

Fig. 7. A sequence of four images of the MIT dome, zooming
into the dome as time progresses. Images vary spatially accord-
ing to x and y, while time is represented along the temporal (ie.
t) axis.

To start, assume that as a point moves through
the scene, its brightness value (in E) does not vary
significantly. [5] Therefore according to the chain

rule for differential calculus, we get:

d

dt
E(x, y, t) = 0

∂E

∂x

dx

dt
+
∂E

∂y

dy

dt
+
∂E

∂t
= 0

Ex
dx

dt
+ Ey

dy

dt
+ Et = 0

uEx + v Ey + Et = 0 (5)

where Ex and Ey are the derivatives of the image
in the x and y directions respectively.

In order to gain a better understanding of the way
objects are situated in our environment compared to
within our images, we can establish the following re-
lationship of perspective projection. Given a optical
center (or center of projection) with focal length f ,
we can use the rule of similar triangles to conclude:

x

f
=
X

Z
,

y

f
=
Y

Z
(6)

where X,Y, Z are the positions of a point in
space, and x, y is the position of that same point
projected onto the image plane. Figure 8 gives a
visual representation of a scene (3D) being projected
on to an image plane (2D), and the proportional
relationship between any point in the scene to its
corresponding point in the image (ie. two equations
above).

Differentiating equations (6) with respect to time
yields:

u

f
=

1

Z

(
U − x

f
W

)
,

v

f
=

1

Z

(
V − y

f
W

)
(7)

where (U, V, W) are the time derivatives of
(X, Y, Z) respectively.

This can be rewritten in terms of the focus of
expansion (x0, y0) :

u = −W
Z

(x− x0), v = −W
Z

(y − y0)

In other words, define the focus of expansion and
time to contact as follows:

x0 = −A
C

y0 = −B
C

TTC =
1

C
(8)

Fig. 8. Diagram illustrating how 3D object in the environment
can be projected into a 2D image plane. From the point of view
of the center of projection (eye), points in the image plane and
in the environment form similar triangles that we use to define
the perspective projection equations.

where A = f UZ , B = f VZ , and C = W
Z . Finally,

equations (7) can be substituted into the original
formula for constant optical flow, equation (5). After
simplifying:

(A+ Cx)Ex + (B + Cy)Ey + Et = 0

AEx +BEy + C(xEx + yEy) + Et = 0

AEx +BEy + CG+ Et = 0

with G = xEx + yEy representing a measure of
the “radial gradient”. The least squares optimization
problem is formulated as follows:

min
A,B,C

∫∫
(AEx +BEy + CG+ Et)

2 dx dy

Taking derivatives with respect to A, B and C
individually and setting equal to zero, a system of
three linearly independent equations can be obtained
and written in matrix form as:

 ∫∫
E2

x

∫∫
ExEy

∫∫
GEx∫∫

ExEy

∫∫
E2

y

∫∫
GEy∫∫

GEx

∫∫
GEy

∫∫
G2

AB
C

 =

− ∫∫
ExEt

−
∫∫

EyEt

−
∫∫

GEt

Finding the inverse of the 3× 3 matrix on the left

enables solving for the vector of interest: [ABC]T .

Once these values are determined, the TTC and FOE
can be computed by plugging into the respective
equation (8) and finding [x0, y0, TTC].

B. Results

The TTC and FOE determination algorithm de-
scribed in the previous subsection was also im-
plemented and integrated into the official Package
Manager built into Julia. We tested our implemen-
tation across a variety of synthetic videos that were
generated by progressively “zooming” into random
points on the image, each time performing a cubic
interpolation maintain image size.

Given any input video pointer (ie. pointer to
local video, or to webcam), the algorithm moves
through the data to progressively determine the time
to contact at that instant, along with the location that
will collide first (ie. FOE). Figure 9 shows the results
of the TTC algorithm compared to ground truth data
for a certain video sequence using 5 different filtering
methods to enhance results.

A common disadvantage of having an image with
a very large number of pixels is that it becomes
increasingly harder to mitigate the effects of noise
and distortions. To combat this, and reduce noise we
can down sample each image by filtering it with a
block averaging filter, and then passing the result
through a low-pass filter. This process will create a
smaller image, with inevitably less noise. We can
continue this further, each time removing more and
more noise (but also loosing more and more image
detail). The five methods shown in Figure 9 represent
different levels of down-sampling. In other words,
“No Filter”, means the original images were used as
inputs to the TTC algorithm, while “Sample” 2, 4, 5
represent the act of down sampling the inputs 2, 4,
5 consecutive times before even passing them to the
TTC algorithm.

We observe that filtering certainly helps up to a
certain point, which may be hard to determine at first
glance. However, a “Multi-Scale” technique can also
be employed to progressively run a search over the
sampling space to identify the best possible amount
to down sample at every video frame. For example,
we start with no sampling, compute the expected
TTC, down-sample and recompute the TTC. If the
estimate improved (ie. reduced) then we continue to

down sample until no additional progress is made.

This technique achieves significantly better results
that ad hoc sampling of the entire video sequence,
and requires no additional prior knowledge about
the environment, or ground truth TTC. These results
are illustrated by the green line on the left plot
of Figure 9, while the respective mean squared
error (MSE) for each of the methods is shown on
the right. Figure 9 illustrates the multi-scale TTC
algorithm significantly outperforms any of the static
scaling methods, but also requires more computation
to progressive search through the sampling space.
Testing our algorithm on a synthetically generated
standard definition video sequence, we are able to
obtain real-time performance of both the original
TTC algorithm (≈ 30Hz) as well as the multi-scale
variant (≈ 10Hz).

VI. FUTURE WORK

We are currently capturing video data from multi-
ple cameras mounted on a self-driving automobile
in the MIT Distributed Robotics Laboratory. This
data presents new challenges, such as multiple points
of interest, and potentially excessive noise (snow,
rain, reflections, etc), and will enable extending and
evaluating our algorithms against real-world driving
conditions. We are also extending our implementa-
tion to automatically detect separable kernels (i.e.,
matrices that are capable of being represented as
the multiplication of two vectors) and compute the
convolution piece-wise over each segment of the
separable kernel. This would reduce the complexity
of the direct algorithm from O(n2) to O(n), and
bring additional performance gains to our imple-
mentation. Separable kernels are a special set of
kernels that appear frequently in machine vision, as
(1) directional derivatives (2) Gaussian smoothing
function, and (3) block averages.

Additionally, we aim to extend our implemen-
tations for applications outside of machine vision.
Specifically, we plan to extend our direct method of
computing n-dimensional convolutions into the FFT
method, in order to handle convolutions with large
kernel sizes.

0 20 40 60 80 100 120 140

Time (frames)

0

50

100

150

200

250

300

350

400

P
re

d
ic

te
d
 T

T
C

Predicted vs Ground Truth

No Filter

Sample 2

Sample 4

Sample 5

Multi-Scale

Ground Truth

No Filter Sample 2 Sample 4 Sample 5 Multi-Scale

Method

0

0.5

1

1.5

2

2.5

3

M
e
a
n
 S

q
u
a
re

 E
rr

o
r

×10 4 Error Through Filtering

Fig. 9. Predicted time to contact vs the ground truth for a synthetically generated video sequence (left). Five down sampling
methods are used, from none to five consecutive down samplings. The right subplot illustrates the mean squared error for each of
the methods used.

VII. CONCLUSION

In this paper, we implement a fast N-dimensional
convolution algorithm, optimized specifically for ma-
chine vision applications, and integrate into the high
performance computing Julia platform. We show
that our algorithms achieve an order of magnitude
performance improvement over the existing imple-
mentation.

Furthermore, we develop a real time implemen-
tation of time to contact and focus of expansion
determination using a single stereo video sequence.
We also evaluate our accelerated convolution imple-
mentation in the context of real-time TTC and FOE
determination. In autonomous systems, TTC and
FOE provide a low complexity method to estimate
the danger of their trajectory and trigger evasive ma-
neuvers as needed. Our accelerated, low complexity,
and reduced memory implementation is especially
attractive for resource-constrained embedded devices
and autonomous vehicle control.

Results are measured against synthetically gen-
erated videos and quantitatively assessed according
to their mean squared error from the ground truth.
Utilizing multiple scales of resolution we show that
it is possible to drastically improve the overall per-
formance of the TTC estimation.

Finally, we packaged and published our code
[13], [14], for both the accelerated convolutions and
the TTC algorithm, into the official Julia Package
Manager, allowing our results to be leveraged on any
Julia capable device with only a few lines of code.

REFERENCES

[1] Horn, Berthold KP, Yajun Fang, and Ichiro Masaki. “Time
to contact relative to a planar surface.” IEEE intelligent
vehicles symposium. 2007.

[2] Philips, Charles L., John M. Parr, and E. Riskin. Signals,
systems, and transforms. Prentice Hall, 1995.

[3] Champeney, David C. A handbook of Fourier theorems.
Cambridge University Press, 1987.

[4] “The Julia Language.” Julia. http://julialang.org
[5] Horn, Berthold KP, and Brian G. Schunck. “Determining

optical flow.” Artificial intelligence 17.1-3 (1981): 185-
203.

[6] Pollard, Stephen, et al. “View synthesis by trinocular edge
matching and transfer.” Image and Vision Computing 18.9
(2000): 749-757.

[7] Shrivakshan, G. T., and C. Chandrasekar. “A comparison
of various edge detection techniques used in image pro-
cessing.” IJCSI International Journal of Computer Science
Issues 9.5 (2012): 272-276.

[8] Holy, Tim, et al. “Cartesian.jl: Fast multidimensional al-
gorithms for the Julia language.” Github.

[9] LeCun, Yann, et al. “Backpropagation applied to handwrit-
ten zip code recognition.” Neural computation 1.4 (1989):
541-551.

[10] Bojarski, Mariusz, et al. “End to End Learning for Self-
Driving Cars.” arXiv preprint arXiv:1604.07316 (2016).

[11] Wallach, Izhar, Michael Dzamba, and Abraham Heifets.
“AtomNet: A Deep Convolutional Neural Network for
Bioactivity Prediction in Structure-based Drug Discovery.”
arXiv preprint arXiv:1510.02855 (2015).

[12] Arfken, G. “Convolution theorem.” Mathematical Methods
for Physicists,: 810-814.

[13] Amini, Alexander, et al. “FastConv.jl: Accelerated Convo-
lutions for the Julia language.” Github.

[14] Amini, Alexander, et al. “TimeToContact.jl: Real-time
Time to Contact algorithm for the Julia language.” Github.

	Introduction
	Discrete Derivatives
	Convolutions
	Roberts
	Prewitt
	Sobel

	Accelerating Convolutions
	Optimization for Vision
	Convolutions in Julia
	FastConv
	Benchmarking

	Time to Contact
	Formulation
	Results

	Future Work
	Conclusion
	References

