
Fast Multipole Methods for the Two Dimensional N Body Problem

Zheng Li1

1Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139
zhli@mit.edu

(Dated: December 8, 2015)

In this work, we implement both serial and parallel fast multipole methods for the two dimensional
N body problem. For the purpose of comparison, the Barnes-Hut algorithm and a direct method
are also implemented. The evolution of galaxies are presented as a demonstration.

INTRODUCTION

The N body problem arises in the situation where it is
desired to evaluate the pairwise interactions in a large
group of particles and that, provided with the initial
states, to compute the position and momentum of each
of the particles at a certain time. One example of the
N body problem could be to simulate the evolution of a
galaxy in its own gravitational field. Another example
could be to model the behaviors of plasma by computing
the Coulomb interactions among the ions and electrons.

Naively, it costs O(N2) to compute the pairwise inter-
actions directly and precisely. However, if some target
particles are well separated from a group of source par-
ticles, we can approximate the potential field from the
sources by a Laurent series centered at a certain point
within the area of the sources. This is called a multipole
expansion, which is equivalent to project the randomly
distributed sources into a series of canonical configura-
tions. In this scenario, we can reduce the cost by elimi-
nating the computation of the contribution of each single
source.

Barnes and Hut utilize the multipole expansion
method, and successfully reduce the cost to O(NlogN).
[1] In the Barnes-Hut algorithm, the space is represented
by a hierarchical tree which is constructed by dividing the
space into subspace recursively and self-similarly. The
multipole expansion coefficients of each node are com-
puted at each level when constructing the tree. After
that, for each particle, a traversal of the tree from its
root is performed. If a node is well separated from the
target particle, the contribution of the potential from the
node is evaluated by its multipole expansion and it is not
necessary to go to the next level. Otherwise, we visit the
children of the node. If a leaf node is visited and it is
still not well separated from the particle, the contribu-
tion of the node is computed directly. In our process, the
condition of well separation is that the distance from the
target to the center of the node is larger than 1.5 × the
size of the node.

The fast multipole method (FMM) is also based on
a hierarchical tree and the multipole expansion of each
node, but it is more sophisticated and the cost is fur-
ther reduced to O(N). [2] In the FMM, firstly at the
leaf nodes, the multipole expansion coefficients are com-

puted directly. Then by a upward traversal, the multipole
expansion coefficients of a node are computed by shift-
ing and adding the multipole expansions of its children.
(Multipole to Multipole, M2M) Afterward, a downward
traversal from the root is performed. For each target
node, we find the nodes that are well separated from
the target at the same level without considering the chil-
dren of the well separated nodes at the previous level.
Then their multipole expansions are transformed into a
local expansion (Multipole to Local, M2L) and add to
the existed local expansion of the target node. The lo-
cal expansion contains the contributions of all the well
separated nodes and can be passed to the next level by
shifting from the center of the parent to the centers of
the children. (Local to Local, L2L) Inside the leaf nodes,
the potentials of the particles are evaluated by adding
the local expansions and the direct interactions from the
nearest leaf nodes.

It is worth noting that for both the Barnes-Hut al-
gorithm and the FMM, the relative errors are well con-
trolled by the order of the multipole expansion and the
condition of well separation .

It is straightforward to compute the evolution as long
as the potential of each particle can be evaluated. We
compute the potentials near the particle to obtain the
negative local gradient, which is just the force field. Us-
ing Newton’s second law, the change of the momentum
as well as the position of each particle can be easily ob-
tained.

NUMERICAL RESULTS

In this section, we perform some results from the nu-
merical experiments in two dimension. The experiments
are executed on an Intel Xeon E5-1650 v2@3.7 GHz
machine, and the environment is Julia 0.4.1 unless there
is a specific indication.

Relative Errors. We first compute the relative er-
rors of the Barnes-Hut algorithm and the FMM versus
the orders of the multiple expansions p with the condi-
tion of well separation not varied. The relative error is



2

FIG. 1: the relative errors versus the order of the multipole
expansions. N = 500.

defined as follows.

εBH/FMM = max

∣∣∣∣φBH/FMM − φdir

φdir

∣∣∣∣ (1)

where dir indicates the direct method which is consid-
ered to be precise. The size of the problem is fixed at
N = 500.

In Fig. 1, the exponential relations of the relative er-
rors and p are clearly observed. This phenomenon is
consistent with the work of Greengard et al. [2] We also
notice that the Barnes-Hut algorithm always performs
better than the FMM in terms of the relative error at
the same p. We believe that the difference mainly comes
from the M2L step, where the extra truncation, besides
the multipole expansion, happens.

Execution Time. We present the execution time of
the three methods in Fig. 2. For all the investigated
problem sizes, we have both the FMM and the Barnes-
Hut algorithm faster than the direct method, and the
FMM is slightly faster than the Barnes-Hut algorithm.
The FMM and the Barnes-Hut algorithm both show ap-
proximately O(N) time cost, while the direct method is
approximately O(N2), as expected.

Linear fits show that the FMM and the Barnes-Hut
algorithm have the cost of O(N1.2) and O(N1.3), respec-
tively. Both are higher than the theoretical values, which
are O(N) and O(NlogN). The extra cost, especially for
the FMM, may come from complex function calls and
deep recursions.

Parallel Speedup. The FMM is also parallelized for
2 and 4 cores. The parallelization is based on the divi-
sion of the space. For example, in the case of 4 cores, the
data of the whole tree is sent to all the processors, but
each processor only operates the FMM for one child of
the root. It is obvious that the M2M, the L2L, and the
evaluation of the potentials can be achieved in an embar-
rassingly parallel scenario. However, the data movement
is required for the M2L, which calls for the M2M results

FIG. 2: the execution time of the three methods versus the
problem sizes. p=8.

FIG. 3: the speedup of the FMM from the parallelization
versus the problem sizes. Number of CPU cores n = 2, 4

from all the cores. Since we find the downward traversal
is much more time consuming than the tree construction
and the M2M, these two steps are still executed in serial
to reduce the data movement.

The speedup compared to the serial code is presented
in Fig.3. Basically, the parallelization of 2 cores does
not have a significant advantage, while a speedup of
approximate 2 is observed for 4 cores. We find the
overheads mainly come from the data movement before
and after the execution, as well as the serial M2M and
the tree construction steps.

Conclusively, the Barnes-Hut algorithm and the FMM
both have good error bounds, and their cost scale as
O(N1+δ), which is much better than the direct method.
The FMM, in our investigated range, is always better
than the Barnes-Hut algorithm, and can be further im-
proved by parallelization.



3

FIG. 4: the evolution of the two galaxies. v = 3. δt = 10−5.

FIG. 5: the evolution of the two galaxies. v = 0.1. δt = 10−5.

EVOLUTION OF TWO GALAXIES: A
DEMONSTRATION

As a demonstration of the N body problem, we present
a model based on the FMM to simulate the evolution of
two galaxies. In the model, each galaxy has 25 stars. The
initial velocities of the two galaxies are opposite and ap-
proximately vertical to the line connecting the two galax-
ies.

The velocity, v, is tuned here and we clearly observe
different behaviors of the galaxies. When v is large and
the centrifugal force balances the gravitation, (Fig. 4)
the galaxies basically keep rotating with their distance
unchanged. Otherwise, when v is small, (Fig. 5) the

FIG. 6: the evolution of the two galaxies. v = 1.8. δt = 10−5.

FIG. 7: the execution time of the three methods in MATLAB.

galaxies are similar to a dipole system. The distance of
them oscillates. When v is in the intermediate regime,
Fig. 6) the galaxies rotate with each other and the dis-
tance also changes periodically over time. In each cycle,
they seem to ’merge’ at some point. However, since there
is no damping in this system, they will still split.

SUPPLEMENTARY MATERIALS

Implementation in MATLAB. We also imple-
ment the same algorithms in MATLAB R2015a, based
on the MATLAB ’handle class’. However, the speeds
are extremely slow (at least 50 × slower than Julia) for
both the Barnes-Hut algorithm and the FMM. Also, the
scaling of O(N) cannot be clearly observed. This should
be somehow expected since MATLAB is well known to
have large overheads when executing function calls and
recursions.



4

ACKNOWLEDGMENT

Z. L. thanks Prof. Alan Edelman for his thought-
provoking 18.337 lectures and very helpful advice on the
parallelization. Z. L. also thanks Dr. Alex Townsend for
delivering the outstanding 18.336 lectures and the helpful
discussion on the project.

[1] A hierarchical O(NlogN) force-calculation algorithm
J. Barnes and P. Hut, Nature, 324, 446 (1986).

[2] A short course on fast multipole methods
R. Beatson and L. Greengard


