Julia Expression Templates for Vector Arithmetic

Tyler Olsen

Department of Mechanical Engineering
Massachusetts Institute of Technology

December 7, 2015

Outline

(1) Introduction \& Motivation
(2) Implementation

- High Level Overview
- Julia: Parametric Types + Multiple Dispatch
(3) Performance
(4) Conclusions

Outline

(1) Introduction \& Motivation
(2) Implementation

- High Level Overview
- Julia: Parametric Types + Multiple Dispatch
(3) Performance
(4) Conclusions

Vectorization

Advantages:

- Compact, expressive code
- Less bug-prone than explicitly written loops
- Significant speedup in "slow" languages

Vectorization

Advantages:

- Compact, expressive code
- Less bug-prone than explicitly written loops
- Significant speedup in "slow" languages

Disadvantages:

- Straightforward implementation \Longrightarrow more memory requirements

Vectorization

Advantages:

- Compact, expressive code
- Less bug-prone than explicitly written loops
- Significant speedup in "slow" languages

Disadvantages:

- Straightforward implementation \Longrightarrow more memory requirements

Conclusion:

- Like to write vectorized code when it makes sense
- Need to be smart about implementation

Vectorization causes extra allocation!

Consider the following expression from a computer's point of view:

$$
\text { Res }=\alpha * a+\beta * b+\gamma * c+\delta * d
$$

Vectorization causes extra allocation!

Consider the following expression from a computer's point of view:

$$
\text { Res }=\underbrace{\alpha * a}_{t m p_{1}}+\underbrace{\beta * b}_{t m p_{2}}+\underbrace{\gamma * c}_{t m p_{3}}+\underbrace{\delta * d}_{t m p_{4}}
$$

Vectorization causes extra allocation!

Consider the following expression from a computer's point of view:

$$
R e s=\underbrace{\alpha * a}_{t m p_{5}}+\underbrace{\beta * b}_{t m p_{1}}+\underbrace{\gamma * c}_{t m p_{2}}+\underbrace{\delta * d}_{t m p_{3}}
$$

Vectorization causes extra allocation!

Consider the following expression from a computer's point of view:

Vectorization causes extra allocation!

Consider the following expression from a computer's point of view:

Vectorization causes extra allocation!

Consider the following expression from a computer's point of view:

- Each $t m p_{i} \in \mathbb{R}^{n}$ requires a memory allocation
- Total memory allocation for this expression is 7x arrays
- If arrays are 1,000,000-element Float64 arrays, allocates 56 MB
- Theoretical memory allocation requirement is a single 8 MB array
- Memory allocation is slow, can degrade performance

What should happen

As humans, we can see that

$$
\text { Res }=\alpha * a+\beta * b+\gamma * c+\delta * d
$$

should be evaluated as

$$
\operatorname{Res}[i]=\alpha * a[i]+\beta * b[i]+\gamma * c[i]+\delta * d[i] \quad \text { for } i \in\{1 . . N\}
$$

What should happen

As humans, we can see that

$$
\text { Res }=\alpha * a+\beta * b+\gamma * c+\delta * d
$$

should be evaluated as

$$
\operatorname{Res}[i]=\alpha * a[i]+\beta * b[i]+\gamma * c[i]+\delta * d[i] \quad \text { for } i \in\{1 . . N\}
$$

- Need to teach computer to do this without manually writing loops

Idea: Expression Templates

- Main Idea: Exploit type system to represent result of vectorized operations ($+,-, . *, . /, \ldots$)
- VectorAddition
- VectorDifference
- VectorScaled

Idea: Expression Templates

- Main Idea: Exploit type system to represent result of vectorized operations ($+,-, . *, . /, \ldots$)
- VectorAddition
- VectorDifference
- VectorScaled
- ...
- The name for this is an "Expression Template"
- Originally developed for $\mathrm{C}++$ linear algebra libraries to improve performance \& readability
- Used by Eigen and Boost.uBlas libraries, among others

Idea: Expression Templates

- Main Idea: Exploit type system to represent result of vectorized operations ($+,-, . *, . /, \ldots$)
- VectorAddition
- VectorDifference
- VectorScaled
- ...
- The name for this is an "Expression Template"
- Originally developed for $\mathrm{C}++$ linear algebra libraries to improve performance \& readability
- Used by Eigen and Boost.uBlas libraries, among others
- Implemented via parametric types and operator overloading in Julia

Outline

(1) Introduction \& Motivation

(2) Implementation

- High Level Overview
- Julia: Parametric Types + Multiple Dispatch

3 Performance
(4) Conclusions

High-Level Implementation

- Base type to represent a vector expression (VectorExpression), from which all types (including Vector) derive
- Define types to represent vectorized operations without copying arguments
- Addition
- Subtraction
- Scaling
- Element-wise multiplication/division
- Define operator[] (getindex() in Julia) for each type
- Overload appropriate operators \& functions to construct VectorExpression subtypes
- Create constructor for Vector type from generic VectorExpressions

Julia Implementation

Definition of base type and main Vector subtype:

```
#define abstract base type
abstract VectorExpression;
# Vector is subtype of base type
immutable ETVector{Float64} <: VectorExpression
    data:: Array{Float64,1}
    len::Int64
end
# construct vector from VectorExpression
function ETVector(A:: VectorExpression)
    len = A.len
    data = zeros(len)
    for i = 1:len
        data[i] = A[i]
    end
    return ETVector(data, len)
end
# define indexing function
    @inline function getindex(A::ETVector, i::Int64)
    return A.data[i]
end
```


Julia Implementation

Example definition of parametric type representing addition of vectors

```
immutable ETVectorAddition {T1<:VectorExpression,
                        T2<:VectorExpression} <: VectorExpression
    lhs::T1
    rhs::T2
    len::Int64
end
# Inline everything!
@inline function getindex(A:: ETVectorAddition, i :: Integer)
    (A.lhs[i]+A.rhs[i]):: Float64
end
@inline function +(lhs:: VectorExpression, rhs::VectorExpression)
    return ETVectorAddition(lhs, rhs, lhs.len)
end
```

- Note references to arbitrary VectorExpressions lhs and rhs (not necessarily of same type)
- Note definition of getindex() for VectorAddition
- Note overload of "+" function returns VectorAddition type

Outline

(1) Introduction \& Motivation

(2) Implementation

- High Level Overview
- Julia: Parametric Types + Multiple Dispatch
(3) Performance

4 Conclusions

Benchmarking

Expression to evaluate:

$$
\begin{aligned}
& \text { Res }=\alpha * a+\beta * b+\gamma * c+\delta * d \\
& \text { where } \quad a, b, c, d \in \mathbb{R}^{N} \\
& \quad \alpha, \beta, \gamma, \delta \in \mathbb{R}
\end{aligned}
$$

- Good candidate for expression templates due to many sub-expressions
- Will compare:
- Native arrays
- Expression Templates using C++-style constructor calls
- Expression templates using custom @et macro
- Hand-coded loop

What the code looks like

- Native Arrays: Res $=\alpha * \mathrm{a}+\beta * \mathrm{~b}+\gamma * \mathrm{c}+\delta * \mathrm{~d}$
- ET w/ Ctors:

$$
\begin{aligned}
\operatorname{Res}= & \alpha * \operatorname{ETVector}(\mathrm{a})+\beta * \operatorname{ETVector}(\mathrm{~b}) \\
& +\gamma * \operatorname{ETVector}(\mathrm{c})+\delta * \operatorname{ETVector}(\mathrm{~d})
\end{aligned}
$$

- ET w/ macro: Res $=$ @et $\alpha * \mathrm{a}+\beta * \mathrm{~b}+\gamma * \mathrm{c}+\delta * \mathrm{~d}$
- Hand-looped:

$$
\begin{aligned}
& \text { Res }=\operatorname{zeros}(\mathrm{N}) \\
& \text { for } \mathrm{i}=1: \mathrm{N} \\
& \quad \operatorname{res}[\mathrm{i}]=\alpha * \mathrm{a}[\mathrm{i}]+\beta * \mathrm{~b}[\mathrm{i}]+\gamma * \mathrm{c}[\mathrm{i}]+\delta * \mathrm{~d}[\mathrm{i}] \\
& \text { end }
\end{aligned}
$$

Benchmark Results: Timing

- Relative Timing Results (results are runtime/"native" runtime)
- (Lower is better!)

N	Native	ET w/ ctors	ET w/ macro	Hand-loop
10^{3}	1.0	0.36	0.36	0.41
10^{4}	1.0	0.31	0.31	0.42
10^{5}	1.0	0.32	0.32	0.33
10^{6}	1.0	0.33	0.33	0.33
10^{7}	1.0	0.32	0.32	0.32

Benchmark Results: Memory

Memory Allocation Results (results in kB):

N	Native	ET w/ ctors	ET w/ macro	Hand-loop
10^{3}	56.656	8.464	8.464	8.064
10^{4}	560.544	80.448	80.448	80.064
10^{5}	5600.544	800.448	800.448	800.064
10^{6}	56000.544	8000.448	8000.448	8000.064
10^{7}	560000.544	80000.448	80000.448	80000.064

Outline

(1) Introduction \& Motivation

(2) Implementation

- High Level Overview
- Julia: Parametric Types + Multiple Dispatch
(3) Performance
(4) Conclusions

Conclusions

- Expression templates yield roughly $60-70 \%$ speedup over native arrays!
- For the expression tested, expression templates use $1 / 7$ the memory of native arrays, and less than only 400 B regardless of array size
- Expression templates either meet or beat the performance of hand-rolled loops in all cases

Future Work

- Extend to generic vector functions $(\sin (a), \exp (a), \ldots)$
- Template based on container (vector, matrix, distributed array, ...)
- Make data type generic (specialized to Float64 for this prototype)

