Relativistic Ray Tracing in Julia

Ryan McKinnon
December 4, 2015

Abstract
In this work, we implement a relativistic ray tracer in Julia based
on the STARLESS Python package. Our relativistic ray tracer is paral-
lelized for shared memory architecture using multiple processes and Ju-
lia’s SharedArray capability. After reviewing the relevant physics, we
demonstrate the ability of our ray tracer to render relativistic scenes in
which light near a black hole is distorted by its gravity. We also analyze
the performance of our Julia code using the built-in profiler and discuss
several optimizations that improved the runtime by just under an order of
magnitude. Finally, we discuss possibilities for future optimizations and
ways in which this work could be extended to distributed memory systems

using MPI or a distributed array package.

1 Introduction

Ray tracing is widely used in scientific computing to render three-dimensional
datasets in two-dimensional images. It is particularly useful in computational
astrophysics, where researchers are often interested in visualizing the results of
complex physical phenomena across large dynamic ranges [11 [7, [T, [0]. However,
it is also known from the astrophysical theory of general relativity that light
rays are bent in a gravitational field. That is, an extreme spacetime can distort
what we consider to be normal ray propagation and require the development of
physics-aware ray tracers.

While many astrophysical processes are non-relativistic and thus not affected
by general relativistic corrections, there are a number of settings in which general
relativity plays an important role. Examples include compact objects and black
holes, which contain matter sufficiently dense to affect the local spacetime. Early
efforts in adopting ray tracing for relativistic settings [Bl [5] have given way to
mature software used in cutting-edge astrophysics research [8 2]. Strategies for
performing these calculations in parallel are also heavily studied and tailored to
the wide variety of supercomputing resources available today, and the field of
astrophysics is likely to become even more computational in the future.

In this paper, we port to Julia the STARLESSE Python package, a lightweight
piece of software capable of ray tracing certain relativistic scenes. While not

Thttp://rantonels.github.io/starless/

http://rantonels.github.io/starless/

as feature-rich and powerful as some existing ray tracers in the literature, this
work demonstrates the suitability of Julia for relativistic ray tracing and the
ease with which such work can be parallelized and optimized.

2 Implementation

Relativistic ray tracing is best understood by first considering non-relativistic
ray tracing. In astrophysics, the one-dimensional radiative transfer equation is
given by

I,(s1) = L,(s0) exp(—7u(80,51)) + /31 Ju(8') exp(—T, (s, 81)) ds’ (1)

S0

where T,,(s) denotes the intensity of radiation at position s and in frequency v,
ju(s) is the corresponding emissivity,

TV(SQ,Sl) = /Sl O[l,(s') dsl (2)

S0

is the optical depth between positions so and s1, and «,(s) is the opacity at
position s in frequency v (see Equation 1 in [6] and references therein). In
ray tracing a three-dimensional volume, the emissivity and opacity are deter-
mined by physically-motivated transfer functions applied to the dataset (e.g. one
can use density or temperature to estimate the amount of emitted radiation).
Since rays are one-dimensional, the radiative transfer equation above governs
the evolution of intensity along the propagation direction. Furthermore, when
generating RGB output images, we can choose three different transfer func-
tions (corresponding to three different physical wavelengths or frequencies) and
independently process data in each color channel.

By discretizing the radiative transfer equation, we can shoot rays over a
gridded dataset from back to front — that is, from a background with zero
intensity towards the imagined camera. Again paralleling [6], we can define

0 = exp(—7,(Sk—1, 5k)) (3)

and

by = /Sk Ju(s") exp(—T, (s, s1)) ds’, (4)

Sk—1
obtaining the recursive relation

L,(Sk) :L,(Sk_l)ak+bk. (5)
If sp and s,, denote the first and last grid positions, respectively, then

I,(sn) = Zbk H 0;. (6)

k=0 j=k+1

This discretized equation can also be solved front to back, a method which turns
out to be more computationally efficient. These equations form the basis of
non-relativistic ray tracing in astrophysics, with RGB output obtained through
the selection of three different frequencies. On a multicore computer, different
regions or pixels of the output image can be assigned to individual processes,
with ray tracing done in parallel. This introduces some initial communication
overhead but ultimately yields a highly parallelizable method.

General relativity introduces some corrections to the paths that light rays
follow, but for certain cases we can make a number of simplifications. The well-
known Schwarzschild metric describes spacetime near an uncharged, nonrotating
black hole and is given, in units where the speed of light and Schwarzschild radius
have unit magnitude, by

—1
ds® = (1 — i) dt* — <1 - i) dr? — r2(d6? + sin? 0dp?), (7)
where now s denotes proper time, ¢ denotes time, and (r,0,¢) are the usual
spherical coordinates (see [10] or other reference texts on general relativity).
Defining v = 1/r and focusing on the § = 7/2 plane, for massless particles like
photons one can ultimately derive the relation
2 3
37)1; = w2 (8)
This equation can be in turn recast as a Newton-like problem, in which trajec-
tories are integrated under the influence of a specified force field. It is this final
approach that the Python STARLESS package follows and which we incorporate
into our Julia code.

Thus, while a fully general relativistic ray tracer that integrates photon paths
from first principles may be computationally very expensive, for certain geome-
tries that are widely studied in astrophysics we can simplify the calculations
considerably to make them tractable. In the case of the Schwarzschild black
hole, we are able to perform calculations similar to those of Newtonian physics
but with additional corrections. The underlying concepts of ray tracing — track-
ing light rays from multiple levels of depth and calculating opacities — remain
the same.

In Julia, we ray trace the output for multiple pixels in parallel and use the
SharedArray syntax to easily index a common array from multiple processes
running on shared memory. The core of the parallelization is done using the
code segment

colour_shared = SharedArray(Float64, (numPixels, 3))
O@sync begin
for (i, wpid) in enumerate(workers())
@async begin
remotecall _wait (wpid, raytrace_func, i,
schedules[i], colour_shared)

end
end
end

where colour_shared holds the RGB image output and is accessible from every
process and raytrace_func is the function that performs the actual ray tracing
and takes as one of its arguments schedules[i], an array of chunks of pixels
assigned to the i-th worker. The CHUNKSIZE parameter controls how many pixels
each worker updates in parallel during the integration process. Too many pixels
can result in large memory allocations and repeated garbage collection, while
too few pixels fails to take full advantage of the benefits of array operations.

We note that the Julia parallelization syntax is considerably simpler than
its Python counterpart. For example, the multiprocessing module in Python
requires the use of a multiprocessing.Array data type when launching worker
processes, but this custom array type is not directly compatible with the NumPy
package for array operations. This results in some array conversions that must
be performed manually. On the other hand, Julia’s SharedArray contains all
parallel-friendly features under-the-hood and can be directly used in Julia func-
tions in place of a normal array.

While the syntax may not be as simple if one were to move this Julia pack-
age to a distributed memory architecture, the ease of shared memory parallel
programming in Julia certainly encourages exploration.

We also use the ConfParser package for reading configuration files at run-
time, allowing us to separate the core ray tracing features from parameters
affecting the visual output. The Julia code needed to run this is available at
http://www.github.com/RyanMcK/jlstarless,

3 Results and Performance

To demonstrate the capabilities of a relativistic ray tracer, in Figure [I] we show
a sample image consisting of a black hole, surrounding accretion disk, and back-
ground stars. As explained in the previous section, this output was generated in
parallel by assigning each process a portion of the image through which to ray
trace. Without a relativistic ray tracer, the ring-shaped features surrounding
the black hole and distorting starlight would not render in a physically-accurate
way.

After porting STARLESS to Julia to produce version 1 of our code, we pro-
filed the main raytrace_func function using Julia’s Profile module. We then
engaged in a cycle of tweaking and profiling to make incremental improvements
to the Julia code. Because ray tracing involves a significant amount of geo-
metric calculations (e.g. vector additions, cross products, norms, etc.), profiling
revealed that norm computations — in particular, computing the row-wise norm
of an N X 3 matrix — were the most time-consuming portion of our code. We
wrote version 2 of our code using the sumabs?2 function instead of a combination
of mapslices and norm, speeding up the code by roughly a factor of 5.8.

http://www.github.com/RyanMcK/jlstarless

Figure 1: The default scene rendered by the Julia relativistic ray tracer, includ-
ing a central black hole and associated accretion disk. The black hole appears
to bend light from stars in a nearby ring. The contrast of this image has been
slightly enhanced to improve the appearance of faint stars in the background.

Another expensive part of the ray tracer was the Runge-Kutta integrator,
which originally had been wrapped in a function. This resulted in the creation
of several temporary arrays, which in turn led to excessive execution time. The
integration portion of our code was sped up by moving the Runge-Kutta calcu-
lations inline and removing all function calls. We were then able to eliminate
many temporary arrays by performing in-place operations and avoiding implicit
copies in long expressions. This resulted in version 3 of our code, with a speedup
factor of 1.2 compared to version 2.

The final version of our code improved runtime by reducing the CHUNKSIZE
parameter, which we noted above controls the number of pixels simultaneously
updated by each process and so determines the size of many arrays created dur-
ing Runge-Kutta integration. Using the -—track-allocation=user command-
line option in Julia, we were able to track memory usage line by line and spot the
worst offending lines. By reducing CHUNKSIZE by a factor of 64, we were able to
rein in large memory allocations and improve runtime by a further factor of 1.3
over version 3. While we settled on a final CHUNKSIZE value by trial and error,
in the future it may be worthwhile to investigate schemes that adaptively select
the appropriate CHUNKSIZE at runtime given the characteristics and memory
speeds of the particular machine used for ray tracing.

In total, this reduced the runtime of our original Julia code by a factor of
around 8.6, just under an order of magnitude. To visualize these performance
results, in Figure [2] we plot the execution time for each version of this Julia ray
tracer as a function of number of cores. The data include time spent allocating
pixel chunks to each process and the actual ray tracing but exclude the small
amount of time used to load initial configuration files. These runs were con-
ducted on Harvard University’s Odyssey supercomputer, which has nodes with
64 cores sharing memory. All versions of the code display a scaling fairly close
to the ideal 1/N scaling, suggesting that these methods would continue to work
on supercomputers with even larger shared memory nodes.

Despite the improvements that we have made, there are a number of av-
enues to pursue for even more performance gains. While the code we have
ported to Julia relies on shared memory machines having many cores per node,
not all supercomputers fit this model. However, there are other Julia frame-
works that could take advantage of a distributed memory architecture and al-
low the ray tracer to use hundreds or thousands of cores. These include the
DistributedArray#ﬂ package for indexing arrays on distributed memory as
easily as with Julia’s SharedArray syntax and its alternative, Message Passing
Interface wrappers like MPI. j1E| for more traditional, communication-intensive
parallel programming. It is also possible that there are even faster ways of
computing row-wise norms than the sumabs2 function, perhaps by using some
external package designed for high-performance computing. Furthermore, there
are likely optimizations that could be made to the numerical integrator used:
currently, a fixed number of integration steps are used for each pixel, while there

Zhttps://github.com/JuliaParallel/DistributedArrays.jl
Shttps://github.com/JuliaParallel/MPI. j1

https://github.com/JuliaParallel/DistributedArrays.jl
https://github.com/JuliaParallel/MPI.jl

104

10°
=
O
E
+
102 £ -
E = yersion 1 E
F = version 2 1
r = version 3 1
L === version 4 4
= example 1/N scaling
101 1 1 1 1 1 1 1 1 I 1 1
10° 10
N

Figure 2: Timing comparison for the four versions of Julia code written, shown
as colored lines. The gray dashed line shows the slope of an ideal 1/N scaling.
The final code, version 4, yields a scaling only slightly worse than the ideal case.

may be some cases in which a pixel’s RGB output value converges quickly and
only a few integration steps are actually needed.

4 Conclusion

We have demonstrated Julia to be a capable language for astrophysics-inspired
ray tracing of relativistic scenes, based on the STARLESS Python package. Shared
memory programming in Julia, using the SharedArray syntax, is even easier
than in Python, and we were able to use Julia’s native profiling features to
improve code performance by almost an order of magnitude. We display close
to ideal scaling out to 32 cores on shared memory and expect these results to
hold for even larger machines, provided the number of pixels being rendered is
sufficiently high.

This project has also revealed the ease with which Python codes can be
ported to Julia. In particular, Julia’s built-in support for arrays and the ability
to use SharedArrays seamlessly in array functions and operations makes the
resulting code easier to write and parallelize. As more third-party libraries are
developed in Julia, particularly ones for scientific computing, we expect the
appeal of Julia to grow.

References

[1] T. Abel and B. D. Wandelt. Adaptive ray tracing for radiative transfer
around point sources. MNRAS, 330:L53-L56, March 2002.

[2] C.-k. Chan, D. Psaltis, and F. Ozel. GRay: A Massively Parallel GPU-
based Code for Ray Tracing in Relativistic Spacetimes. ApJ, 777:13,
November 2013.

[3] C. T. Cunningham. The effects of redshifts and focusing on the spectrum
of an accretion disk around a Kerr black hole. ApJ, 202:788-802, December
1975.

[4] C. T. Cunningham and J. M. Bardeen. The Optical Appearance of a Star
Orbiting an Extreme Kerr Black Hole. ApJ, 183:237-264, July 1973.

[5] J.-P. Luminet. Image of a spherical black hole with thin accretion disk.
AEA, 75:228-235, May 1979.

[6] T. Peters. The physics of volume rendering. Furopean Journal of Physics,
35(6):065028, November 2014.

[7] H. Trac and R. Cen. Radiative Transfer Simulations of Cosmic Reioniza-
tion. I. Methodology and Initial Results. ApJ, 671:1-13, December 2007.

[8] F. H. Vincent, T. Paumard, E. Gourgoulhon, and G. Perrin. GYOTO: a
new general relativistic ray-tracing code. Classical and Quantum Gravity,
28(22):225011, November 2011.

[9] M. Vogelsberger, S. Genel, D. Sijacki, P. Torrey, V. Springel, and L. Hern-
quist. A model for cosmological simulations of galaxy formation physics.
MNRAS, 436:3031-3067, December 2013.

[10] R. M. Wald. General relativity. 1984.

[11] J. H. Wise and T. Abel. ENZO+MORAY: radiation hydrodynamics adap-
tive mesh refinement simulations with adaptive ray tracing. MNRAS,
414:3458-3491, July 2011.

	Introduction
	Implementation
	Results and Performance
	Conclusion

