
Relativistic Ray Tracing in Julia

Ryan McKinnon

November 30, 2015

Introduction

Ray tracing is used in many scientific fields to visualize 3D data

Relativistic ray tracing is needed to model a black hole’s
warped spacetime under general relativity

This project implements and optimizes a relativistic ray tracer
in Julia based on the starless Python code

Methods

SharedArrays for shared memory array access

ConfParser.jl for reading configuration files at runtime

Using Harvard’s Odyssey supercomputer with up to 64 cores
per node for a test image of size 1024 by 786; could imagine
rendering much bigger scenes

Timing comparisons below include parallelization overhead
(e.g. assignment of regions of the image to different threads) and
ray tracing time, but ignore loading of configuration files, etc.

Ease of Julia Parallelization

co l ou r sha r ed = SharedArray (Float64 , (numPixels , 3))
@sync begin

f o r (i , wpid) in enumerate (workers ())
@async begin

r e m o t e c a l l w a i t (wpid , ray t race func , i ,
s chedu l e s [i] , c o l ou r sha r ed)

end
end

end

Much simpler than in Python, where the multiprocessing
module requires you to use a separate array type that you must
manually convert to a numpy array!

Optimization Efforts

Ray tracing involves lots of vector math and norm
computations; use of sumabs2! to compute the norm squared
improved performance by 5.8x

Another common routine was the Runge-Kutta integrator,
which was rewritten inline to eliminate some temporary arrays,
speedup of 1.2x

Modifying the CHUNKSIZE parameter controlling the number of
pixels worked on simultaneously by a thread also helped,
speedup of 1.3x

In total, improved initial Julia ray tracer by 8.6x

Parallelization Efficiency

100 101

N

101

102

103

104

ti
m

e
(s

)

version 1
version 2
version 3
version 4
example 1/N scaling

Other Opportunities for Improvement

MPI or distributed array programming is a natural extension

Perhaps an even more efficient way to compute norms?

More advanced integration routines that adaptively determine
number of integration steps (rather than some fixed number)

Summary

Implemented a relativistic ray tracer in Julia based on
starless Python code

Parallelization (threading, SharedArrays) and optimization
tweaks significantly improved performance

Parallelization easier to implement in Julia than Python!

