Alignment and clustering tools for sequence analysis

Omar Abudayyeh 18.337 Presentation December 9, 2015

Introduction

- Sequence comparison is critical for inferring biological relationships within large datasets of DNA or protein sequences
- Next generation sequencing has generated too much data
- Need for fast and accurate tools for comparing DNA or protein sequences

Available sequence comparison tools

Similarity Metrics

edit distance

dynamic programming (needleman-wunsch, smith waterman)

k-tuple (FASTA, BLAST)

Clustering greedy (UCLUST, CD-HIT) graph (markov clustering) vector (k-means) hierarchical

• 1. Smith-waterman local alignment

- Serial and parallel implementations in Julia

2. Markov clustering - Parallelized linear algebra implementation in Julia

Outline

1. Smith-waterman local alignment

Introduction to local Smith-waterman alignment

- Traditional string matching is not useful for comparing DNA or protein sequences due to evolutionary events
- Traditional alignment is assessed through cost function (e.g. edit distance) or stochastic similarity scores (e.g. ML through HMM)
- These approaches all involve dynamic programming, but this can be costly for large problems ~ O(MN)
- Smith-waterman is highly amenable to parallelism due to specific data dependencies in the matrix

Smith-waterman algorithm

- N x M integer matrix, where N and M are sequence lengths
- 1. Initialize matrix $H(i,0) = 0, \ 0 \le i \le m$ $H(0,j) = 0, \ 0 \le j \le n$ **C** 0 **A** 0 Τ Ο 2. Fill Matrix **G** 0
- $$\begin{split} H(i,j) &= \max \begin{cases} 0 \\ H(i-1,j-1) + s(a_i,b_j) & \text{Match/Mismatch} \\ \max_{k\geq 1} \{H(i-k,j) + W_k\} & \text{Deletion} \\ \max_{l\geq 1} \{H(i,j-l) + W_l\} & \text{Insertion} \end{cases} \end{split}$$
- 3. Traceback Path $H_{opt} = max(H[i,j])$ traceback(H_{opt})

 $,\ 1\leq i\leq m, 1\leq j\leq n$

Smith-waterman example

seq1 = "ATGCATGCATGC" seq2 = "ATGGGCATG"

	٨	Α	Т	G	С	Α	Т	G	С	Α	Т	G	С
٨	0	0	0	0	0	0	0	0	0	0	0	0	0
A	0	2	1	0	0	2	1	0	0	2	1	0	0
Т	0	1	4	3	2	1	4	3	2	1	4	3	2
G	0	0	3	6	5	4	3	6	5	4	3	6	5
G	0	0	2	5	5	4	3	5	5	4	3	5	5
G	0	0	1	4	4	4	3	5	4	4	3	5	4
С	0	0	0	3	6	5	4	4	7	6	5	4	7
Α	0	2	1	2	5	8	7	6	6	9	8	7	6
Т	0	1	4	3	4	7	10	9	8	8	11	10	9
G	0	0	3	6	5	6	9	12	11	10	10	13	12

	٨	Α	Т	G	С	Α	Т	G	С	Α	Т	G
٨	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
Α	Ν	Μ	-	-	-	Μ	-	-	-	Μ	-	_
Т	Ν		Μ	-	-	-	Μ	-	-	-	Μ	_
G	Ν			Μ	-	-	-	Μ	-	-	-	M
G	Ν	_			Μ	-	-		Μ	-	-	
G	Ν	-				Μ	_	Μ	-	Μ	-	M
С	Ν	-			Μ	-	-		Μ	-	-	-
A	Ν	Μ	-			Μ	-	_		Μ	_	-
Т	Ν		Μ	-			Μ	-	-		Μ	_
G	Ν			Μ	-			Μ	-	-		M

Smith-waterman example

seq1 = "ATGCATGCATGC" seq2 = "ATGGGCATG"

	٨	Α	Т	G	С	Α	Т	G	С	Α	Т	G	С		٨	Α	Т	G	С	Α	Т	G	С	Α	Т	G
٨	0	0	0	0	0	0	0	0	0	0	0	0	0	٨	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν	Ν
A	0	2	1	0	0	2	1	0	0	2	1	0	0	Α	Ν	Μ	-	-	-	Μ	-	-	-	Μ	-	-
Т	0	1	4	3	2	1	4	3	2	1	4	3	2	Т	Ν		Μ	-	-	-	Μ	-	-	-	Μ	-
G	0	0	3	6	5	4	3	6	5	4	3	6	5	G	Ν			Μ	-	-	-	Μ	-	-	-	Μ
G	0	0	2	5	5	4	3	5	5	4	3	5	5	G	Ν	-			Μ	-	-		Μ	-	-	
G	0	0	1	4	4	4	3	5	4	4	3	5	4	G	Ν	-				Μ	-	Μ	-	Μ	-	Μ
С	0	0	0	3	6	5	4	4	7	6	5	4	7	С	Ν	-			Μ	-	-		Μ	-	-	_
Α	0	2	1	2	5	8	7	6	6	9	8	7	6	Α	Ν	Μ	-			Μ	_	_		Μ	-	-
Т	0	1	4	3	4	7	10	9	8	8	11	10	9	Т	Ν		Μ	-			Μ	-	-		Μ	-
G	0	0	3	6	5	6	9	12	11	10	10	13	12	G	Ν			Μ	-			Μ	-	-		Μ

ATGCATGCATG ATGG—GCATG

Parallel Implementation of SW

- Sequentially assign anti-diagonal elements to processers
- With p=min(m,n) processors, DP table can be computed in (m + n 1) passes
- Some inefficiency due to processor stalling equal to p(p-1)

Liu et al. ICCS 2006

Parallel Implementation of SW

for **j** = 2:col |co| = |irow = 2**@sync begin** count = 1w = workers()while jcol > 1 && irow < row + 1 |co| = 1irow += 1count += 1end end end

Implemented this with normal arrays and shared arrays on a 40 core machine

@async remotecall_wait(w[count],shared_get_score!,arguments)

Input Sequence Length (nt)

• Parallel SW is ~1,880x slower, but Julia serial SW is ~2.5x faster than python

Outlook

- Overhead too large for parallelism, but serial algorithm in Julia outperforms python
- Try GPU computation with more cores (Julia CUDA) and OpenCL)
- Eliminate processor stalling by interleaving requests
- Parallelize other database alignments, such as BLAST
- Add support for protein alignment

2. Markov clustering

Introduction to markov clustering

- Markov clustering algorithm originally developed for graph clustering and is now a key tool within bioinformatics
- Useful for determining clusters in networks (e.g. protein interactions can help identify genes in disease such as cancer)
- With next generation sequencing technologies, there are vast amounts of data
- Performance and scalability issues are limiting factors

Van Dongen, S. A cluster algorithm for graphs, Information Systems

Markov-clustering overview

- Markov clustering is a simulation of random walks
- After enough walks, flows in the graph become evident and correspond to clusters

Markov-clustering Algorithm

Two step process: where M is the transition matrix of a weighted, undirected graph

1. Expansion

 $Exp(M) = M^p$.

2. Inflation

 $(\Gamma_r M)_{ij} = (M_{ij})^r / \sum (M_{kj})^r; i = 1...m, j = 1...n.$ k=1

Markov-clustering Algorithm

Algorithm:

- 1. Start with transition matrix
- 2. Normalize the matrix
- 3. Expand by taking the *p*th power of the matrix
- 4. Inflate by taking the inflation of the matrix with parameter r
- 5. Repeat steps 3 and 4 until steady state is reached
- 6. Analyze matrix for clusters

Markov clust

Power of 2 Inflation of 2

ter	in(J E	Xan	٦D	le	
1 1 0 1	1 0 1 0	1 1 0 1		1/4 1/4 1/4 1/4	1/3 1/3 0 1/3	1/2 0 1/2 0
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	.33 .33 .33		1/4 1/4 1/4	$ \begin{array}{ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c} 1/3\\1/3\\0\\1/3\end{array} = \\ 5 .31 .38\\5 .31 .13\\0 .08 .38\\5 .31 .13 \end{array} $	$ \begin{array}{r} 1/4 & 1/3 \\ 1/4 & 1/3 \\ 1/4 & 0 \\ 1/4 & 1/3 \\ 3 & .31 \\ 3 & .31 \\ 3 & .08 \\ 3 & .31 \\ 3 & .31 \\ \end{array} $

Parallelizing markov clustering

- MCL is O(N³), where N is number of vertices
 - Cost due to matrix multiplication (inflation can be done in $O(N^2)$)
- Because algorithm is just basic linear algebra operations, it's highly amenable for parallelization
- Implemented parallelized version of expansion and compared performance

Bustamam et al. IEEE 2010 HPC.

MCL algorithm parallelized expansion

@everywhere function mymatmul!(n,w,sa,sb,sc,p)

range = 1+(w-1) * div(n,p) : (w) * div(n,p)

sc[:,range] = sa[:,:] * sb[:,range]

end

function sharedmult(n,p,sa,sb,sc)
 @sync begin
 for (i,w) in enumerate(workers())
 @async remotecall_wait(w, mymatmul!, n, i, sa, sb, sc,p)
 end
 end

return sc

end

Performance of parallel matrix multiplication

- Shared memory improves performance by **25x**
- Near linear scaling is observed

- **— P-1600**
- ---- P-3200
- **—** P-4800
- **—** P-6400
- → SP-1600
- ---- SP-3200
- **-D-** SP-4800
- **SP-6400**

30

40

Shared memory MCL has superior performance

scalable performance

- **SP-1600**
- **SP-2400**

--- SP-3200

Shared memory MCL improves performance by 21x and has linear

The genetic landscape of a cell

Metabolism & amino acid biosynthesis

> ecretion & /esicle ransport

- Dataset created from an interaction map of 5.4 million gene-gene pairs from the budding yeast, Saccharomyces cerevisiae
- 3886 nodes and 15,100,996 edges
- ~26% sparsity

Costanzo et al, *Science, 2010*

MCL successfully clusters 3,886 proteins

MCL shared achieved 27x speed increase and linear scaling

Average cluster size: 6.45 proteins Clusters with >5 members: 229 Singlet Clusters: 253 Total # of clusters: 714

Outlook

- Parallelizing in Julia gave superior performance of MCL
- Even better performance was observed on a real, sparse dataset
- Develop a version for GPU computation with Julia
- Implement a sparse version in order to reduce memory usage (such as using CSC format in Julia)

Thank you

Questions?