
Alignment and clustering tools
for sequence analysis

Omar Abudayyeh
18.337 Presentation
December 9, 2015

Introduction

• Sequence comparison is critical for inferring biological relationships
within large datasets of DNA or protein sequences

• Next generation sequencing has generated too much data

• Need for fast and accurate tools for comparing DNA or protein
sequences

Available sequence comparison tools

!

Similarity Metrics
!

edit distance!
!

dynamic programming
(needleman-wunsch, smith

waterman)
!

k-tuple (FASTA, BLAST)
!

!

Clustering
!

greedy (UCLUST, CD-HIT)
!

graph (markov clustering)
!

vector (k-means)
!

hierarchical!
!
!

Outline
• 1. Smith-waterman local alignment!

- Serial and parallel implementations in Julia
!

• 2. Markov clustering!
- Parallelized linear algebra implementation in Julia

!

1. Smith-waterman local alignment

Introduction to local Smith-waterman alignment
• Traditional string matching is not useful for comparing DNA or

protein sequences due to evolutionary events

• Traditional alignment is assessed through cost function (e.g. edit
distance) or stochastic similarity scores (e.g. ML through HMM)

• These approaches all involve dynamic programming, but this can
be costly for large problems ~ O(MN)

• Smith-waterman is highly amenable to parallelism due to specific
data dependencies in the matrix

Smith-waterman algorithm
• N x M integer matrix, where N and M are sequence lengths

^ A T G C A T G C A T G C
^ 0 0 0 0 0 0 0 0 0 0 0 0 0
A 0
T 0
G 0
G 0
G 0
C 0
A 0
T 0
G 0

1. Initialize matrix

3. Traceback Path
Hopt = max(H[i,j])
traceback(Hopt)

2. Fill Matrix

Smith-waterman example

^ A T G C A T G C A T G C
^ 0 0 0 0 0 0 0 0 0 0 0 0 0
A 0 2 1 0 0 2 1 0 0 2 1 0 0
T 0 1 4 3 2 1 4 3 2 1 4 3 2
G 0 0 3 6 5 4 3 6 5 4 3 6 5
G 0 0 2 5 5 4 3 5 5 4 3 5 5
G 0 0 1 4 4 4 3 5 4 4 3 5 4
C 0 0 0 3 6 5 4 4 7 6 5 4 7
A 0 2 1 2 5 8 7 6 6 9 8 7 6
T 0 1 4 3 4 7 10 9 8 8 11 10 9
G 0 0 3 6 5 6 9 12 11 10 10 13 12

^ A T G C A T G C A T G C
^ N N N N N N N N N N N N N
A N M - - - M - - - M - - -
T N | M - - - M - - - M - -
G N | | M - - - M - - - M -
G N - | | M - - | M - - | M
G N - | | | M - M - M - M -
C N - | | M - - | M - - - M
A N M - | | M - - | M - - -
T N | M - | | M - - | M - -
G N | | M - | | M - - | M -

seq1 = "ATGCATGCATGC"
seq2 = "ATGGGCATG"

Smith-waterman example

^ A T G C A T G C A T G C
^ 0 0 0 0 0 0 0 0 0 0 0 0 0
A 0 2 1 0 0 2 1 0 0 2 1 0 0
T 0 1 4 3 2 1 4 3 2 1 4 3 2
G 0 0 3 6 5 4 3 6 5 4 3 6 5
G 0 0 2 5 5 4 3 5 5 4 3 5 5
G 0 0 1 4 4 4 3 5 4 4 3 5 4
C 0 0 0 3 6 5 4 4 7 6 5 4 7
A 0 2 1 2 5 8 7 6 6 9 8 7 6
T 0 1 4 3 4 7 10 9 8 8 11 10 9
G 0 0 3 6 5 6 9 12 11 10 10 13 12

^ A T G C A T G C A T G C
^ N N N N N N N N N N N N N
A N M - - - M - - - M - - -
T N | M - - - M - - - M - -
G N | | M - - - M - - - M -
G N - | | M - - | M - - | M
G N - | | | M - M - M - M -
C N - | | M - - | M - - - M
A N M - | | M - - | M - - -
T N | M - | | M - - | M - -
G N | | M - | | M - - | M -

seq1 = "ATGCATGCATGC"
seq2 = "ATGGGCATG"

ATGCATGCATG
ATGG—GCATG

Parallel Implementation of SW

• Sequentially assign anti-diagonal elements to processers

• With p=min(m,n) processors, DP table can be computed in (m + n -1) passes

• Some inefficiency due to processor stalling equal to p(p-1) Liu et al. ICCS 2006

Parallel Implementation of SW
for j = 2:col!
 jcol = j
 irow = 2
 @sync begin!
 count = 1
 w = workers()
 while jcol > 1 && irow < row + 1
 @async remotecall_wait(w[count],shared_get_score!,arguments)!
 jcol -= 1
 irow += 1
 count += 1
 end
 end
end

• Implemented this with normal arrays and shared arrays on a 40 core machine

Performance of SW

• Parallel SW is ~1,880x slower, but Julia serial SW is ~2.5x faster than python

0 100 200 300 400 500
0.0

0.5

200

400

600

Input Sequence Length (nt)

Ti
m

e
(s

)

Python
Julia
SP16
SP32

Outlook
• Overhead too large for parallelism, but serial

algorithm in Julia outperforms python

• Try GPU computation with more cores (Julia CUDA
and OpenCL)

• Eliminate processor stalling by interleaving requests

• Parallelize other database alignments, such as BLAST

• Add support for protein alignment

2. Markov clustering!

Introduction to markov clustering
• Markov clustering algorithm originally developed for graph

clustering and is now a key tool within bioinformatics

• Useful for determining clusters in networks (e.g. protein interactions
can help identify genes in disease such as cancer)

• With next generation sequencing technologies, there are vast
amounts of data

• Performance and scalability issues are limiting factors

Van Dongen, S. A cluster algorithm for graphs, Information Systems

Markov-clustering overview
• Markov clustering is a simulation of random walks

• After enough walks, flows in the graph become evident and
correspond to clusters

Markov-clustering Algorithm
Two step process: where M is the transition matrix of a weighted,
undirected graph!

1. Expansion

!

!

2. Inflation

Markov-clustering Algorithm
Algorithm:!

1. Start with transition matrix

2. Normalize the matrix

3. Expand by taking the pth power of the matrix

4. Inflate by taking the inflation of the matrix with parameter r

5. Repeat steps 3 and 4 until steady state is reached

6. Analyze matrix for clusters

Markov clustering example

Parallelizing markov clustering
• MCL is O(N3), where N is number of vertices

• Cost due to matrix multiplication (inflation can be done in O(N2))

• Because algorithm is just basic linear algebra operations, it’s highly
amenable for parallelization

• Implemented parallelized version of expansion and compared
performance

Bustamam et al. IEEE 2010 HPC.

MCL algorithm parallelized expansion
@everywhere function mymatmul!(n,w,sa,sb,sc,p)!
 range = 1+(w-1) * div(n,p) : (w) * div(n,p)
 sc[:,range] = sa[:,:] * sb[:,range]
end!
!

function sharedmult(n,p,sa,sb,sc)!
 @sync begin!
 for (i,w) in enumerate(workers())
 @async remotecall_wait(w, mymatmul!, n, i, sa, sb, sc,p)
 end
 end
 return sc
end

Performance of parallel matrix multiplication

• Shared memory improves performance by 25x!

• Near linear scaling is observed

0 10 20 30 40
0

10

20

30

S
pe

ed
 u

p

#Cores

P-1600
P-3200
P-4800
P-6400
SP-1600
SP-3200
SP-4800
SP-6400

Shared memory MCL has superior performance

• Shared memory MCL improves performance by 21x and has linear
scalable performance

Cores

S
pe

ed
 u

p

0 10 20 30 40 50
0

5

10

15

20

25
P-1600
P-2400
P-3200
SP-1600
SP-2400
SP-3200

The genetic landscape of a cell

Costanzo et al, Science, 2010

• Dataset created from an
interaction map of 5.4 million
gene-gene pairs from the
budding yeast,
Saccharomyces cerevisiae

• 3886 nodes and 15,100,996
edges

• ~26% sparsity

MCL successfully clusters 3,886 proteins

• MCL shared achieved 27x speed increase and linear scaling

Average cluster size: 6.45 proteins
Clusters with >5 members: 229

Singlet Clusters: 253
Total # of clusters: 714

0 10 20 30 40
0

10

20

30

S
pe

ed
 u

p

Cores

P
SharedP

Outlook

• Parallelizing in Julia gave superior performance of MCL

• Even better performance was observed on a real, sparse dataset

• Develop a version for GPU computation with Julia

• Implement a sparse version in order to reduce memory usage (such
as using CSC format in Julia)

Questions?

Thank you

