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We present Julia-Accelerated Molecular Dynamics (JAMD), a molecular dynamics (MD) code in
the Julia language. We show that JAMD compares very favorably with MATLAB-based MD codes,
and is robust enough to enable rapid visualization of simple molecular systems. We demonstrate
that there are several avenues to leverage parallelism in Julia, thereby accelerating simulations of
interest in nanoscale engineering. We also discuss two algorithms that use prefix sums to perform
N -body computations, relevant to MD simulations – one is based on recasting the Fast Multipole
Method as a combination of parallel prefix and embarrassingly parallel operations and the other
involves computation of potentials as a summation of low-rank functional approximations. We
describe both methods in detail with special emphasis on exposing the prefix summations. These
methods are generic and can be used anywhere; in particular, they find applications in our MD
library when long-range Coulombic forces are involved in the simulation of ionic species or polar
molecules. Finally, we suggest further areas of MD development that should be amenable to Julia
implementation.

INTRODUCTION AND MOTIVATION

Statistical physics provides a powerful toolbox for ana-
lyzing nanoscale systems, with applications ranging from
nanofluidic device engineering to chemical process devel-
opment to biomolecule manipulation and drug design.
However, when the number of degrees of freedom in the
system becomes large (and the system Hamiltonian grows
correspondingly unsightly), analytical approaches in sta-
tistical physics are often intractable. For example, the
statistical properties of a dense fluid could in principle
be obtained through analytical (or numerical) solution of
the Born-Bogoliubov-Green-Kirkwood-Yvon (BBGKY)
hierarchy of equations, but for real-world systems this
is comically impractical due to the high dimensionality
and non-linearity of the BBGKY equations [1]. This mo-
tivates the need for a computational approach that can
generate a large number of system microstates for the
purpose of sampling and thermodynamic analysis. For
this purpose, molecular dynamics (MD) is a particularly
popular and successful simulation algorithm. MD de-
terministically generates the time evolution of a system
using information about atomistic kinematics and inter-
atomic potentials. This is accomplished by numerically
integrating Newton’s equations of motion for each con-
stituent atom. The atomic trajectories produced by an
MD simulation may then be analyzed to extract material
or transport properties, or visualized to provide a general
sense of the nanoscopic mechanics of the system.

As a very computationally intensive simulation
method, we believe that Julia may be well suited for the
development of an open-source MD code. To this end, we
have developed Julia-Accelerated Molecular Dynamics
(JAMD). In this work, we will provide an overview of the
MD algorithm as implemented in JAMD (including the
Fast Multipole Method algorithm, which can be used for
rapid calculation of electrostatic forces) and also provide
comparisons between JAMD and comparable MATLAB-

based MD codes. We will also discuss two approaches
to MD parallelization – one based on an embarrassingly
parallel approach and another based on parallel prefix
– that may yield significant speedup for the simulation.
Our work suggests that Julia is a strong candidate lan-
guage for continued development of MD codes.

OVERVIEW OF THE MD ALGORITHM AND
IMPLEMENTATION IN JAMD

We begin by supplying a brief summary of the MD
algorithm, including technical background on the specific
MD features implemented in JAMD.

Time-Integration of Newton’s Laws

The goal of MD simulation is to use knowledge about
atomic positions and velocities, along with information
about interatomic interactions, to predict positions and
velocities in the future. In particular, consider an atom
of mass mi located at position r⃗i, where the potential
field is U = U(r⃗i). Then this atom obeys the equation of
motion:

mi
d2r⃗i
dt2

= −∂U
∂r⃗i

= f⃗i (1)

Here, f⃗i is the force exerted on this atom.

Given a system of N interacting atoms, Eqn. (1) repre-
sents N coupled non-linear ODEs, which unsurprisingly
cannot be solved analytically for non-trivial systems i.e.
N > 2. Thus we must use a numerical integration tech-
nique to update the 6N values of atomic positions and
velocities.
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Velocity Verlet

Using knowledge of r⃗i at time t (and all previous
times), we can calculate the value of position at a time
δt later, r⃗i(t + δt), as:

r⃗i(t + δt) = r⃗i(t) + v⃗i(t)δt +
1

2
a⃗i(t)δt2 (2)

where a⃗i = f⃗i/mi. Analogously, we can update the veloc-
ity u⃗i using:

u⃗i(t + δt) = u⃗i(t) +
a⃗i(t) + a⃗i(t + δt)

2
δt (3)

This approach is known as the velocity Verlet algorithm
[2, 3]. This algorithm is the standard basis for numeri-
cal time integration in popular research-grade molecular
dynamics codes, such as LAMMPS [4]. We point out sev-
eral important aspects of the velocity Verlet algorithm,
which are generally considered to be advantages of the
integration scheme:

1. This method is self starting and explicit. In other
words, given initial positions and velocities (and
interatomic potentials), we are immediately able to
implement Eqns. (2) and (3) without specifying
additional initial conditions. Moreover, at every
timestep, we are able to calculate the LHS using
known values for RHS quantities.

2. Velocity Verlet is a symplectic integrator. This
means that as long as the forces in the system are
conservative, the system Hamiltonian will not devi-
ate substantially from its initial value in the long-
time limit; in fact, the Hamiltonian will oscillate
around its initial value.

3. The global errors in position and velocity are both
O(δt2).

The Velocity Verlet integrator is contained within the
function take a step, within the module MD calc.

Constraint Dynamics

The basic method described so far should, in princi-
ple, allow us to predict the time-evolution of a molecular
system. However, the dynamics of real-world systems
are often constrained in ways that are not directly or
obviously related to Newton’s laws. This motivates the
implementation of constraint dynamics. In particular,
we are often interested in simulating systems that have
a fixed temperature, which necessitates a thermostat.

If we wish to conduct a simulation in the canonical
ensemble (in other words, we wish to hold constant the

particle number N , the system volume V , and the tem-
perature T ), it may be difficult to maintain a constant
temperature since symplectic integration only preserves
total system energy. The Berendsen thermostat [5] re-
lies on rescaling velocities to achieve the desired tem-
perature. In the simplest sense, this thermostat can be
implemented by adjusting every atom’s velocity u⃗ to a
modified velocity u⃗′ given by:

u⃗′ = u⃗
√

Tdes

Tinst
(4)

where Tdes is the desired temperature and Tinst is the
current system temperature. To prevent sharp jumps in
temperature, it is common to introduce a relaxation pa-
rameter α (less than 1) to “smooth out” the thermostat-
ting process:

u⃗′ = u⃗
¿
ÁÁÀ(1 + α( Tdes

Tinst
− 1)) (5)

The Berendsen thermostat is contained within the
function take a step, within the module MD calc.

Interatomic Potentials

We now discuss two interatomic potential models for
fluids of interest in this work: The Lennard-Jones (LJ)
potential (a good model for simple molecules interact-
ing primarily through van der Waals effects), and the
Coulomb potential (which governs electrostatic interac-
tions such as those between ions in an ionic liquid).

The LJ potential [6] between two atoms separated by
a distance r is given by:

V (r) = 4ε[(σ
r
)

12

− (σ
r
)

6

] (6)

The parameters ε and σ serve as characteristic energy
and lengthscales (respectively) for the potential; in par-
ticular, ε is the magnitude of the minimum value of the
LJ potential and σ

6
√

2 is the interatomic spacing at which
this minimum potential is achieved. This potential cap-
tures two key features of (non-electrostatic) intermolec-
ular interactions:

1. Strong repulsion (O(r−12)) for small separation
distances (r → 0), which is due to quantum-
mechanical restrictions on heavily overlapping elec-
tron clouds.

2. Weak attraction (O(r−6)) for large separation dis-
tances (r →∞), which is due to electrostatic inter-
actions between induced dipoles. (This attraction
is commonly referred to as the van der Waals ef-
fect.)
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Because the LJ potential falls off very rapidly with r, it
is possible to expedite MD calculations involving the LJ
potential while maintaining high accuracy by neglecting
the contributions of all atoms beyond a fixed cutoff radius
R (typically R ≈ 3σ).

The well known Coulomb potential at a distance r from
a particle of charge Q is given by:

V (r) = Q

4πε0r
(7)

Here, ε0 is the permittivity of free space (ε0 = 8.854 ⋅
10−12F ⋅ m−1). Note that since the Coulomb potential
falls off relatively slowly (especially compared to the LJ
potential), the electrostatic force is considered to a long-
range force and cannot be treated with a cutoff radius
comparable to the LJ potential.

The choice of potential can be specified within the
function force calculation, within the module MD calc.

Sampling of Thermodynamic Quantities from
Classical Trajectories

For any system observable A, we can define the expec-
tation value of A as the ensemble average:

⟨A⟩ = ∫
Γ
A({r⃗, p⃗})f({r⃗, p⃗})dΓ (8)

where {r⃗, p⃗} is the set of positions and momenta for all
particles in the system and f is the probability density
in phase-space Γ.

In equilibrium statistical mechanics, the probability
density f can be expressed in terms of the system Hamil-
tonian H({r⃗, p⃗}) as:

f({r⃗, p⃗}) = e
−βH({r⃗,p⃗})

Q
(9)

where β is the inverse temperature (kBT )−1. Here, Q
refers to the partition function, which is defined as:

Q = ∫
Γ
e−βH({r⃗,p⃗})dΓ (10)

Discretely speaking, for an ensemble of M identically
prepared systems running in parallel (each of which yields
a measurement of the observable A), the expectation
value of A is given by

⟨A⟩ = 1

M

M

∑
i=1

Ai (11)

because an MD simulation, by construction, produces
samples of f({r⃗, p⃗}).

This formulation of expectation value is not particu-
larly efficient for an MD simulation, which evolves a sin-
gle system over time. To get a larger sample size without

running many MD simulations in parallel, we can make
use of the ergodic hypothesis; in other words, we assume
that successive snapshots of a thermodynamic quantity
over time (for a single system) converge in distribution
to that same quantity measured over a large number of
parallel systems. Given the ergodic hypothesis, M rep-
resents the number of snapshots over time (as opposed
to the number of identically prepared systems running in
parallel).

In particular, there are two thermodynamic quantities
of interest in this work. The density ρ in a volume V is
calculated according to:

ρ = 1

V
∑
i∈V

mi (12)

In the absence of a fluid-center-of-mass flow velocity,
the temperature T in a volume V is sampled using the
Virial Theorem in three dimensions:

T = 1

3NkB
∑
i∈V

mi∣u⃗i∣2 (13)

REDUCED UNITS

To keep our numerical results as “clean” as possible,
our Julia code reports quantities in reduced units. For
a system of N LJ atoms with parameters σ and ε, we
define:

1. The reduced particle density N∗ = Nσ3.

2. The reduced temperature T ∗ = kBT
ε

.

3. The reduced energy E∗ = E
ε

.

4. The reduced time t∗ =
√

ε

mσ2
t.

Conversion between reduced and real units can be
modified within the main JAMD program.

MD Algorithm Flow

The basic steps of our MD simulation, as implemented
in the main JAMD program, are as follows:

1. Initialize the system by specifying all atomic po-
sitions and velocities, as well as all relevant inter-
atomic potentials.
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2. To advance to the next timestep, loop over each
particle i ∈ {1, . . . ,N} and:

a) Calculate the force on particle i using the inter-
atomic potentials. Note that this step is particu-
larly computationally expensive, as it could impose
computational cost up to O(N2); in our work, we
focus on embarrassingly parallel and parallel-prefix
approaches to tackling this high O(N2) cost.

b) Update the position and velocity of particle i
using velocity Verlet. Rescaling of the velocities
based on the Berendsen thermostat can be done
after velocities are updated.

3. Save atomic positions and velocities. If the system
is sufficiently equilibrated, one may perform ther-
modynamic sampling using these trajectories.

4. Return to Step 2 and repeat for as many timesteps
as desired.

5. After simulation, trajectories can be post-processed
for the purposes of statistical analysis or visualiza-
tion.

JAMD VISUALIZATION

Using PyPlot.jl [7], we are able to visualize our simu-
lated system using the trajectories produced by JAMD.
A representative snapshot of such a visualization is shown
in Figure 1. Visualization options can be specified within
the main JAMD program.

COMPARISON BETWEEN JAMD AND
MATLAB MD

We performed MD simulations of eight representa-
tive nanofluidic systems, detailed in Table I, using both
JAMD as well as a highly optimized MATLAB MD code.
Each fluid is either a liquid or vapor phase of argon, which
is a noble gas and is thus well approximated by the LJ
potential.

We observe a very clear speedup of JAMD relative to
MATLAB. These speedups are of at least one order of
magnitude for all benchmark systems. We believe that
Julia’s strong performance is primarily due to our code
optimizations, which involve minimal memory allocation.

EMBARRASSING PARALLELIZATION AND
SHARED ARRAYS

Because force calculations are the most costly step in
the MD algorithm, and since the force between any two

FIG. 1. Snapshot showing 27 atoms of a dilute phase of argon.

Name ρ [σ−3] # Atoms MATLAB/JAMD Ratio

Tiny Vapor 0.25 8 41.34

Small Vapor 0.25 27 11.15

Medium Vapor 0.25 125 14.27

Large Vapor 0.25 512 13.35

Tiny Liquid 0.95 8 38.27

Small Liquid 0.95 27 12.67

Medium Liquid 0.95 125 15.89

Large Liquid 0.95 512 14.28

TABLE I. Timing results for eight benchmark nanofluidic sys-
tems. All simulations were carried out for a (dimensionless)
time of 5 units. The ratios were calculated by dividing the
time taken for the MATLAB MD code to complete the simula-
tion by the time taken for JAMD to complete the simulation.
All ratios were calculated as the average over three trial runs
of the simulation code.

atoms is independent of any other atom, one simple yet
effective approach to parallelization is to split the process
of calculating interatomic forces over multiple processors.
By taking advantage of the SharedArray type in Julia,
we can divide the work of calculating entries in the in-
teratomic force matrix. This is implemented for the LJ
potential within the function force calculation parallel,
within the module MD calc. Our speedup results are
reported in Table II. We note that communication la-
tency can be a very costly component of this paralleliza-
tion scheme, and so in practice this approach does not
yield speedups for small systems. For large systems (con-
taining at least O(103) atoms), this method should yield



5

# Processors Relative Time

1 1

2 0.71

3 0.52

4 0.43

TABLE II. Speedup results for an embarrassingly parallel cal-
culation of interatomic forces. All simulations were carried
out for a (dimensionless) time of 5 units on the “Large Liq-
uid” system described in Table I. All ratios were calculated
relative to the run-time of JAMD on a single processor, using
the average over three trial runs of the simulation code.

some amount of parallel speedup.

PARALLEL PREFIX AND THE FAST
MULTIPOLE METHOD

The Fast Multipole Method is an algorithm that
computes a dense matrix-vector product in O(N)
time. The entries of the matrix correspond to gravi-
tational/electrostatic interactions in N -body problems,
usually. In general, the entries represent the evaluations
of the Green’s function of the Laplace/Helmholtz oper-
ator or more generally, evaluations of interaction poten-
tials that fall rapidly such as 1/r or even exponentially
(in Fast Gauss Transforms). The algorithm calculates an
approximate local expansion (Taylor expansion) that can
be evaluated at target points to obtain the interactions
due to all the source points. This report addresses the
question of how the algorithm can be viewed as a cumu-
lative summation of certain function representations.

The Algorithms

In this section, we discuss the algorithms in question,
namely:

1. FMM

2. Neighbor-exclusive Cumulative Sum in Serial and
in Parallel.

The traditional FMM algorithm in 2D

The computational box is assumed to be split into 4
(2 and 8 in case of 1D and 3D respectively) child boxes
recursively, l times, to obtain a quadtree structure. The
number of levels l is decided by the desire to not have
more than a certain number of particles per box at the
finest level.

Now, the FMM computes a Taylor series approxima-
tion centered about each box at the finest level, which

can be evaluated at particles in each box (assuming tar-
get points are source points). This Taylor series approxi-
mation pertains to the interactions felt by the particles in
that box, due to all the particles outside the near neigh-
bors of the box (near neighbors are the boxes that share
an edge with the box, at the same level – maximum of 9,
including the box itself in case of 2D). The interactions
with the near neighbors are computed directly. This, in
brief, is how the FMM arrives at an approximate local ex-
pansion, through a series of projection and interpolation
steps, following [8]:

1. At the finest level, multipole expansions (M) are
calculated around each box center. These are coef-
ficients of an approximate function that has singu-
larities near the origin (box center) but is valid with
high accuracy in the far field (z > 2R, where z is
the evaluation point in the complex plane and R is
the box width at the finest level). The approximate
function refers to φz:

φ(z) = a0 log(z) +
s

∑
i=1

ai/zi (14)

Now, M refers to the vector {a0, . . . , as}, computed
as follows:

a0 =
m

∑
i=1

qi (15)

ak =
m

∑
i=1

−qizi
k

(16)

where qi are the charges in the box and s is cho-
sen as approximately log2 ε, for a relative accuracy
(with respect to a0) of ε.

2. M at every level, which is centered around the box
center is translated to be centered around the par-
ent box’s center – this is done recursively start-
ing at the finest level. We refer to this step as
the M-M translation step with the operator that
shifts the origin of the multipole expansion from
child to parent box, being referred to as, τMM(A =
{a0, . . . , as} → B = {b0, . . . , bs}) where b0 = a0 and
bl is given by:

bl = −
a0z

l
0

l
+

s

∑
k=1

akz
l−k
0 (l − 1

k−1
) (17)

These can be derived from binomial series. The
important point to note here is that τMM is a linear
form in a0 and ak. This fact will be exploited in a
future section.

In the above, z0 refers to the center of the child box,
with the center of the parent box as the origin. We
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must remember that the vector M of a box gives
the expansion coefficients for evaluation outside the
box, of the potential due to particles inside the box.

3. In this step, the translation operator τML(A =
{a0, . . . , as} → B = {b0, . . . , bs}) is applied at ev-
ery level, starting at level 0, to shift the multipole
expansion coefficients A of the j-th box to local
expansion coefficients of the i-th box, B. Here, j
refers to the indices of the interaction list of i (chil-
dren of the near neighbors of i’s parent that aren’t
neighbors of i, with a maximum of 27 per box) and
this operation is repeated for all i, at a given level.
Now, we can see that the interactions that have yet
to be counted in, at this stage and at every level,
can be obtained shifting the local expansion coeffi-
cients of the parent of a box to the child, at every
level. This allows us to get the local expansion coef-
ficients. We refer to this translation using the oper-
ator τLL(A = {a0, . . . , as}→ B = {b0, . . . , bs}). τML
and τLL can be obtained from Lemmas 2.2 and 2.3
in [8] and various other FMM literature. The point
we must note is that these operators are linear in
the input vector coefficients and this fact can be
used to parallelize the translation operations.

Cumulative Sums

Given a vector x, the inclusive cumulative/prefix sum

is the vector y given by: y[i] =
i

∑
j=1

x[j]. The inclusive

suffix sum refers to y[i] =
N

∑
j=i

x[j]. The exclusive version

of these sum types don’t count the element itself i.e. ex-

clusive prefix would be y[i] =
i−1

∑
j=1

x[j]. Now, the exclusive

prefix-suffix refers to the sum of all the elements except
the current element. (From here on, we refer to the vec-
tors x and y to indicate the input and output vectors,
respectively, of cumulative sums of any kind).

The algorithms that perform the exclusive prefix-suffix
directly are trivial and takeO(2N) operations. Note that
they must be performed as a prefix operation “added” to-
gether with a suffix and not as the current element “sub-
tracted” from the total sum – this is because “subtrac-
tion” may not be a backward stable operation. For in-
stance, consider the case of “add” referring to the transla-
tion τML. In this case, we will be “subtracting” multipole
expansion evaluations within the box and that means
evaluation at singularities.

Essentially, the “sum” here makes the prefix algorithm
a general purpose polymorphism – it could refer to any
binary operation. A parallel version of the prefix basi-
cally works by performing hierarchical sums in O(logN)

FIG. 2. Pictorial representation of hierarchical FMM in 2D,
from [9].

FIG. 3. Inverse spanning tree, from course notes.

time, in a spanning tree followed by an inverse spanning
tree (the order of operations is shown in Figure 3).

FMM in 2D as Parallel Prefix + Embarrassingly
Parallel Operations

In this section, we see how we can retain the hierar-
chical structure of the non-adaptive FMM algorithm and
implement it as a combination of parallel prefixes and em-
barrassingly parallel operations. Let us recast the above
mentioned FMM algorithm as follows:

1. The computation of M ’s at the finest level is an
embarrassingly parallel operation. This should be
an O(N/p) operation on p processors.

2. The Upward Pass: For each box i at the finest level,
we construct a “path” that represents an array of
boxes spanning all the levels such that path[i + 1]
is the parent of path[i]. Populating the multi-
pole expansion coefficients of path is a cumulative
sum, which can be implemented as a parallel pre-
fix! That is, the sum operation refers to the τMM

operator defined above and the x[i] refers to the M
vector of a box at the l−i+1th level. Here is a code
snippet, in Julia, that constructs path and calls the
prefix function:

for i= 1:nbox_finest_level

pathind[1,i] = i
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path[1,i] = tree[end,i]

for j = 1:levels-1

t = pathind[j,i]

pathind[j+1,i] =

get_parent(t,levels-j+1)

path[j+1,i] = tree[end-j,pathind[j+1,i]]

end

FMM.prefix!(path[:,i], MM_prefix)

for j = 1:levels-1

[tree[end-j,pathind[j+1,i]].M[k] +=

path[j+1,i].M[k]

for k=1:s]

end

end

3. The Downward Pass: The downward pass can be
thought of as applying the parallel prefix on the
path vectors, this time constructed in reverse order.
We need to ensure that the interaction list calcula-
tions (which are embarrassingly parallel) enter the
x array, which now consists of local expansion co-
efficients. Note that we need not wait for all the
IL computations to finish but only that they are
in the prefix algorithm, as they are added: this is
possible because τML and τLL (which is the “sum”
part of parallel prefix) are linear in their input.

As a note on the implementation of the above in Julia,
we could use a SharedArray to store the two types of
functional coefficients: Multipole and Local. The worker
processes need to be synced at the end of the upward and
downward passes.

In summary, we look at the FMM computations in the
upward and downward passes as a set of embarrassingly
parallel operations. Each of these operations is further
a parallel prefix, with the relevant translation operator
being the “sum” and the vector x being either the mul-
tipole or local expansion arrays of boxes across different
levels. As a final note, we must acknowledge that this ap-
proach makes the abstractions in FMM clearer and gives
a speedup over regular parallel FMM code when N is
large enough for logN to be significant.

FMM as Neighborhood Exclusive Cumsum

In this section, we will examine how the computation
of function approximations at the finest level fits the ab-
straction of serial neighborhood exclusive prefix-suffix –
this idea is outlined in [10]. Let’s begin by recalling that
at the end of the FMM algorithm, we end up with a lo-
cal function approximation that we evaluate inside each
box, at the finest level, to obtain the interactions due to
particles in all other boxes at the finest level, excluding

the near neighbors of the box. Now, in a neighborhood
exclusive cumsum:

y =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . 1 1 1 1 1 1

. . . 1 1 1 1 1

1 . . . 1 1 1 1

1 1 . . . 1 1 1

1 1 1 . . . 1 1

1 1 1 1 . . . 1

1 1 1 1 1 . . .

1 1 1 1 1 1 . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x

This gives the idea that if the x vector refers to a func-
tional approximation of the influence of the boxes at the
finest level, then the local approximation at the finest
level can be thought of as the y vector. This leaves us to
find out what exactly x can be.

x being Multipole Expansion coefficients

Now, let us consider x to be the M vectors of the boxes
at the finest level. Then, the “sum” operation required,
in order for y[i] to hold local expansion coefficients of the
ith box, must be the translation operator τML. At this
point, two remarks are in order:

1. In every “add” operation defined as above, we must
keep in mind that the center of the local expansion
we would like is the center of the box i. Therefore,
we need a total of nbox such cumsums, to get the
correct local expansions in all the nbox boxes.

2. The neighborhood excluded must be all boxes
within 2R and not just the near neighbors. This
is because the M-L translation converges inside a
box of width R only when the source box is farther
than 2R away i.e. the singularities of the multi-
pole expansion are well-separated from the target
points. Now, therefore, the number of interactions
that must be computed directly has increased to in-
clude the previously defined interaction list as well.

Given the cost of this approach, we may be able to do
better if we chose a different x. This calls for an alter-
nate representation of the approximation to the potential
function, an idea proposed in [10].

Projection using SVD

We have thus far utilized two types of functional ap-
proximations to represent the potential – multipole and
local expansions. In this section, we shall explore the
possibility of using other functional approximations of
the potential. In order to overcome the limitations of
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our previous approach, we need this x[i] to be centered
around the box center of i and be valid for evaluation in-
side box i. We can start over by considering the original
N -body problem:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ(y1)
φ(y2)
.

.

.

φ(yn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Φ

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G(x1, y1) . . . G(xn, y1)
. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

G(x1, yn) . . . G(xn, yn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

G

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1

q2

.

.

.

qn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
±
Q

(18)

where, G is the Green’s function representation of the
potential (for instance, it could be the Green’s function
of the Laplace operator in 2D,G(x, y) = log ∣∣x−y∣∣). Now,
say that all the target points {yi} are well-separated from
the source points {xi}. Then, the set of charges {qi} can

be projected onto a center q =
N

∑
i=1

qi at x (say, geometric

center of {xi}) and the interactions at the target points
will approximately be the interactions with the center.
That is:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ(y1)
φ(y2)
.

.

.

φ(yn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≈

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q ×G(x, y1)
. . .

. . .

. . .

. . .

q ×G(x, yn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G(x, y1)
. . .

. . .

. . .

. . .

G(x, yn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

× [1 1 . . . 1]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
G1

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q1

q2

.

.

.

qn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

In essence, by the above projection of charges onto a sin-
gle charge, we have replaced the matrix G with its rank-1
approximation, G1. Similarly, we could consider a rank-p
(p << n) projection of G to get a better functional approx-
imation of the potential. That is, we could approximate
φ by considering a rank-p projection of G, Gp such that:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φ(y1)
φ(y2)
.

.

.

φ(yn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

≈

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

G(x̃1, y1) . . . G(x̃p, y1)
. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

. . . . . . . . .

G(x̃1, yn) . . . G(x̃p, yn)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

×

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q̃1

q̃2

. . .

q̃p

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

We know that the best rank-p approximation of a ma-
trix can be obtained from the SVD of the matrix as:
p

∑
i=1

σiuiv
T
i , where the SVD of G is given by G = UΣV T

and ui and vi are the columns of U and V respectively.
But, performing an SVD is as expensive as or more ex-
pensive than a direct matrix-vector multiplication of the
original problem. Following [10], we use instead p Lanc-
zos iterations (O(Np2)) to pick p virtual charges and
positions, thus giving us a good approximation to eval-
uate at any target point not within R of the box. This
method gives us an accuracy equivalent to the s = 2p
term multipole expansion. When p = 1, we have the
COM projection method just discussed above. We detail
this method in the next section.

The Lanczos Projection Method

This section is about how we use a well-known eigen-
value algorithm, the Lanczos iteration method, to find a
low-rank functional approximation for our required po-
tential function. The algorithm itself is outlined in [10]
and various other literature. Our focus here will be to
explain how and why it works in turning our N -body
problem into a direct summation of certain functional
approximations.

We know that p iterations of Lanczos algorithm on a
Hermitian matrix A results in a p × p tridiagonal matrix
Tpp. In constructing this matrix, the Lanczos method
computes an orthogonal basis for the Krylov subspace
{b,Ab,A2b,A3b . . .Ap−1b}. Here, b is any arbitrary nor-
malized vector. It is also known that the eigen values of
Tpp provide a close approximation to the p largest eigen-
values of A [11].

Therefore, the questions that need to be answered are:

1. How do we choose A and b for our potential ap-
proximation problem?

2. How do the eigenvalues and eigenvectors of Tpp help
us in writing our potential as a direct sum?

Gauss Quadrature And Lanczos

To answer the first question posed above, let us look at
the continuous (integral) analog of our N -body problem
in Eqn. (18):

Aσ(x) = ∫
Ω
σ(y)G(x, y)dy

where A ∶ L2(Ω) → L2(Ω) is an integral operator that
acts on the function σ(y) that represents the continu-
ous charge distribution (whose discrete analog was Q) to
produce the required potential function at target point x.
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To evaluate the above integral, one could use the p-point
Gauss quadrature rule, which is exact for polynomials of
degree up to 2p − 1 (Theorem 37.3, [11]). We have:

Aσ(x) ≈
p

∑
i=1

wiσ(yi)G(x, yi) (19)

Note that we recover our exact discrete problem for the
set of weights {wiσ(yi)} ≡ {qi}, the set of nodes {yi} ≡
{xi} (where xi are the original locations of the source
charges), and p = n.

We now aim to compute the quadrature nodes and
weights for p << n, through the Lanczos algorithm.
Therefore, we need to answer our first question (1) on
choosing the Hermitian matrix A and an appropriate vec-
tor b. In order to do so, let us recall from Eqn. (19) above
that:

φ(x) =
n

∑
i=1

qiG(x,xi) (20)

Focussing our attention on 1D or 3D problems,
G(x,xi) = 1/∣∣x−xi∣∣. Define D−1 to be a diagonal matrix
such that D−1

ii = sgn(qi)/xi. Then, D−1q = {φ(0, xi)} =
Ψ(say). Therefore, Ψ ∈ {q,Dq,D2q, . . .Dn−1q}. Hence,
in our Lanczos Algorithm, A needs to be D such that
Dii = sgn(qi)xi, where xi are the original locations. b
needs to be a normalized vector of the absolute values of
the original charges qi. But, when D is as defined, ac-
cording to Theorem 37.4 of [11], we have, yi ∶ set of nodes
of Gauss quadrature are the eigenvalues of the tridiago-
nal matrix Tpp and the weights, which are equal to the
new set of charges (q̃i = wiqi) can be obtained from the
eigenvectors of Tpp as:

q̃i = 2 ⋅ ∣vi1∣2

where, vi1 is the first element of the i-th eigenvector of
Tpp. (Notice that q̃i are always positive and the signs
have been preserved in D instead.)

To summarize, φ(x) has been expressed as a sum of
p orthogonal Legendre polynomials, through this Lanc-
zos procedure. In the FMM, the local expansion is a
polynomial of degree p but here, we have achieved the
best possible accuracy with polynomials of degree up to
2p−1, with only p charges and positions – this was possi-
ble because of the connection of the virtual charges and
positions to Gaussian quadrature weights and nodes, re-
spectively.

Projections and Evaluations As Cumsums

We are now only left with the second question: how
can the above-mentioned Lanczos procedure be used to
treat our problem as a cumulative sum?

The idea is that given any box center i as the origin, we
use the Lanczos algorithm to obtain the p virtual charges

FIG. 4. Simulation box in 1D: The open circles (red) are the
charges and the closed circles (black) mark off box widths.
Far field interactions are those that act from beyond one box
width – these are added to the near neighbor interactions
computed directly.

and their positions that effectively describe the interac-
tions of the charges in the far field (far field is defined as
∣x−xi∣ > R, whereR is one box width). The near-neighbor
interactions are computed directly for every box, in the
final step, like in the FMM.

However, the reason this algorithm can be looked at
as a cumulative sum is that the Lanczos procedure is not
performed for all the particles in the far field of every box
but rather in increments. That is, we compute the far-
field interactions in two loops of size equal to the number
of boxes: the prefix loop and the suffix loop.

In the prefix loop, we traverse the boxes from left to
right. At the end of the i-th iteration of the prefix loop,
we have approximated the cumulative effect of all the
particles qj that are distributed in boxes {1 . . . i} at po-
sitions xj into q̃ik (1 ≤ k ≤ p). That is:

φ(x) =∑
j

qjG(x,xj) ≈
p

∑
k=1

q̃ikG(x, x̃ik) ∣x − xic∣ > R (21)

where R is the box width and xic is the center of the
i-th box. This reduction can be performed by doing p
Lanczos iterations with xic as the origin. This functional
approximation is evaluated at all charge positions in the
box i + 2.

Now, i is updated to the next box and the old virtual
charges obtained in the previous step, which are posi-
tioned within the set of boxes {1 . . . i}, are retained as
l ≤ p “original” charges. To these, the set of charges in
the cell i, Ni, are added and a Lanczos projection is per-
formed on the diagonal matrix containing the positions
of the p+Ni charges. This is done to reduce the number
of virtual charges and positions to p, with the box center
of i + 1 as the origin. This new set of charges and po-
sitions, {q̃i+1} can now be evaluated at target points in
the box i + 3.

Note that if the total number of charges is ≤ p, the vir-
tual charges and positions are the actual ones. Now the
same procedure is performed right to left, in the suffix
loop. The final piece of the puzzle is the near-neighbor
interactions, which are added directly at each target po-
sition.

Here is the pseudocode for the prefix loop:

q0
v = 0, x0

v = 0
for all i ∈ box {1 . . .Nbox} do

Add charges and positions in box i to qi−1
v and xi−1

v .
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Perform Lanczos projection, if total size of qv > p,
and obtain qiv and xiv.

Evaluate at target positions in box i+2 using Eqn.
(21).
end for

The suffix loop is identical except from right to left. To
summarize, the “+” operation in the prefix loop con-
sists of a Lanczos projection followed by potential evalu-
ation at the target points in box i + 2. Now, if we didn’t
use the old virtual charges at every iteration but per-
formed a Lanczos projection of the original charges up to
box i at every iteration, then the algorithm will be much
more expensive (O(NNboxp2)) but now the Nbox calls to
the prefix function can be run in parallel. However, the
accuracy of recycling the old virtual charges needs to be
analyzed! One obvious fact to note is that in keeping
the number of virtual charges p constant, we are seek-
ing better approximations for lower values of i: that is,
the near parts of the far field are indeed approximated
better, thereby possibly justifying this algorithm.

CONCLUSIONS AND FUTURE DIRECTIONS

We have developed JAMD, an MD code in the Ju-
lia language. JAMD demonstrates very strong perfor-
mance against comparable MATLAB-based codes for a
variety of benchmark systems used in nanoscale engineer-
ing. Moreover, we have identified and discussed in detail
several major approaches for force-calculation paralleliza-
tion based on embarrassingly parallel operations as well
as parallel prefix, which both show good promise for the
future parallelization of other interatomic potentials.

We have discussed the correspondence between the
Fast Multipole Method and cumulative sums of function
approximations. In our first approach, we retained the
hierarchical structure of the FMM and exposed the un-
derlying parallel prefix sums in the projection and inter-
polation. In our second, we try to reproduce the effect
of the FMM using serial cumulative summations that ex-
clude neighbor interactions.

We intend to carry out further development of JAMD,
including the following additions and areas of further
study:

1. Implementation of more-complex and multi-body
interatomic potentials, such as the three-body
Stillinger-Weber potential [12]. These potentials
should also be amenable to embarrassing paral-
lelization.

2. Creation of additional visualization tools using Py-
Plot.jl.

3. Integration of the Fast Multipole Method into force
calculations involving electrostatic forces, as well
as support for systems featuring multiple types of
interatomic interactions.

4. Robust support for multi-component systems, in-
cluding a built-in library that supports different
atomic and molecular species.

5. Development of function libraries that are com-
monly used in advanced MD codes. These
would include automatic geometry initialization
for complex geometries, alternative and additional
constraint dynamics methods (e.g. the Nosé-
Hoover thermostat [13] or the SHAKE geometry-
constraint algorithm for large molecules [14]), as
well as application-specific thermodynamic output
formats.

Based on the present work, we believe that Julia pro-
vides the “best of both worlds” for MD simulations, com-
bining the raw speed of a low-level language with the con-
venience and abstraction of a high-level language. JAMD
is a promising beginning for the further development of
Julia-based MD codes.
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