
Genetic Programming for Julia: fast performance and parallel
island model implementation

Morgan R. Frank

November 30, 2015

Abstract

I introduce a Julia implementation for genetic programming (GP), which is an evolutionary algorithm that evolves
models as syntax trees. While some abstract high-level genetic algorithm packages, such as GeneticAlgorithms.jl, al-
ready exist for Julia, this package is not optimized for genetic programming, and I provide a relatively fast implemen-
tation here by utilizing the low-level Expr Julia type. The resulting GP implementation has a simple programmatic
interface that provides ample access to the parameters controlling the evolution. Finally, I provide the option for the
GP to run in parallel using the highly scalable ”island model” for genetic algorithms, which has been shown to improve
search results in a variety of genetic algorithms by maintaining solution diversity and explorative dynamics across the
global population of solutions.

1 Introduction
Evolving human beings and other complex organisms
from single-cell bacteria is indeed a daunting task, yet bi-
ological evolution has been able to provide a variety of
solutions to the problem. Evolutionary algorithms [1–3]
refers to a field of algorithms that solve problems by mim-
icking the structure and dynamics of genetic evolution. In
particular, evolutionary algorithms typically model solu-
tions to a given problem using some data structure, which
can be treated as a genotype or gene. These algorithms be-
gin with a collection, or “population”, of these data struc-
tures and iteratively generate new populations, or “gener-
ations”, by implementing genetic mutation and crossover
on good solutions in the existing population. Good solu-
tions are often referred to as being “fit” if they reproduce
a target signal; therefore, we typically measure fitness by
measuring how well a solution minimizes error. The fit-
ness of a given solution can be thought of as a phenotype.

Here, I focus on a particular type of evolutionary al-
gorithm called “genetic programming” (GP). In general,
genetic programming evolves syntax trees that represent
models, which aim to reproduce a target signal given in-
put signals. In theory, these syntax trees can represent
any program, but we will restrict ourselves to the sym-
bolic regression problem here. Therefore, our syntax trees
will represent equations, which will act on numeric input
variables and reproduce a numeric output variable. Some
powerful third-party software packages exist, such as Eu-
reqa [4], but these packages are not open-source and can

be inflexible when attempting to handle diverse problems.
Julia’s easy vectorization, access to low-level data types,
and user-friendly parallel implementation make it an ideal
language for developing a GP for symbolic regression.

Finally, I will discuss a powerful and widely used
method for utilizing multiple computing cores to improve
solution discovery using evolutionary algorithms. Since
many languages implement multi-processing, rather than
multi-threading, naive methods seeking to improve the
runtime of evolutionary algorithms (e.g. evaluate the fit-
ness of population members in parallel), are often rel-
atively fruitless due to the communication overhead re-
quired to bring the population back to a single process for
essential steps in the algorithm iteration, such as genetic
crossover. Furthermore, evolutionary algorithms that it-
erate with a single population are susceptible to conver-
gence on a “local optima” solution, rather than seeking
a more desirable “global optima” through increased ex-
ploration. The island model [5, 6] is a useful paradigm
for parallel computation in evolutionary algorithms that
largely overcomes both concerns by iterating an indepen-
dent population of solutions on each available core. Since
each population is initialized randomly, it is possible that
individual populations will independently explore solu-
tion space and possibly converge on different local op-
tima. The last piece is to implement occasional “migra-
tion” between the populations, where good solutions from
one population are removed and sent to a different popu-
lation running on a different parallel process. Migration

1



seeks to encourage the overall GP to continue exploring
around the best solutions, rather than having populations
converging too quickly to locally optimal solutions. Fur-
thermore, migration is the only step in the island model
that requires communication between processes during
runtime, but migration is infrequently performed and only
a few solutions are communicated at each migration step.
In summary, we see that the island model provides a
highly scalable means to improve overall performance of
evolutionary algorithms, rather than simply improving al-
gorithmic runtime.

2 GP implementation in Julia
I employ an object-oriented implementation of GP in Julia
by defining four key types that are essential to running the
GP. The Tree type will be used to represent the solution
models as syntax trees. At the root of each Tree is a Julia
Expr, which is the literal representation of the equation
which we hope reproduces the target variable from input
variables. The Expr type is a powerful low-level Julia type
that is perfect for this task because of fast evaluation and
easy manipulation. In fact, the Julia metaprogramming
page highlights that Julia expressions are first parsed into
Expr types before being possibly compiled and then eval-
uated. In addition to the Expr root, Trees have property
fields for the age (ie. the number of generations the tree
has survived unchanged), the depth (ie. the maximum tree
depth of the syntax tree), the number of nodes in the syn-
tax tree, and the fitness value of the syntax tree. Further-
more, Tree types have methods for copying themselves,
listing their nodes in evaluation order, a toString method,
an equals method, and a method for determining if the
tree is better than another tree (if so, then we would say
the tree “dominates” the other tree, but more on that be-
low).

I define a gpLibrary type as a place to store the func-
tions and terminals with which to construct Trees. Termi-
nal values are numbers, called “constants”, or variables,
and they represent entities that can be used as leaves in
the syntax trees. Functions are added to the library along
with the number of input variables they require. These
functions are available to be used as non-leaf nodes in the
syntax trees, and so the number of inputs for each func-
tion determines the number of children a node will have
based on the function the node represents. Beyond stor-
ing these entities, gpLibrary types also contain some nice
functionality for randomly accessing stored Terminals and
Functions. Deciding which functions and which constants
to include in the library is problem dependent. For exam-
ple, if you know your target signal is periodic, then per-

haps you should include trigonometric functions in your
library; otherwise, maybe you should omit trig functions
if your signal is not periodic but is instead quite noisy as
the trig functions might be used to overfit the noise in the
target signal. My implementation of GP is restricted to
using only the terminals stored in the library, but future it-
erations of this project would instead use only parameters
and variables as terminals for the syntax trees, along with
occasional parametric optimization for each syntax tree
through least-squares regression or another evolutionary
algorithm.

The Population type represents an independent GP
population, which iterates over time to form new gener-
ations of solutions. Populations store a population as a
list of Trees. The number of Trees to maintain in the Pop-
ulation is given as the popSize property when the Popula-
tion is initialized. The subset of these Trees representing
“good” solutions are stored in a separate list as well. We
will see that “good” Trees define a Pareto front. In this
context, “good” trees are trees that are young, simple, and
reproduce the output signal. For measuring the latter, a
fitness function must be provided to the Population which
defines how to measure the error between the syntax tree
and the target signal; for example, you might use abso-
lute error or root-mean-squared error as a fitness function.
The GP will attempt to find Trees that, in part, minimize
the fitness function.

There are several ways one might define the simplicity
of a syntax tree, but for our purpose we can assume that
Trees with fewer nodes will be easier to interpret in the
context of the problem being solved by the GP. The type
of crossover typically employed in genetic programming
(discussed below) tends to produce new syntax trees that
are deeper than their parent trees; this tendency towards
larger and more complicated trees is known as “bloat”.
Allowing bloat to go unchecked would result in only com-
plicated solutions and eventually even effect the runtime
of the GP algorithm. Note that bloat is not always a bad
thing, as the genetic material contained therein may lead
to useful combinations of library variables for a future
Tree. In any case, implementing selection pressure for
simplicity should help combat bloat. Future iterations of
this project might allow users to assign complexity val-
ues to each function in the gpLibrary which represents the
cost of executing that function or interpreting that func-
tion in the context of the larger problem.

Finally, we want “young” Trees, or specifically Trees
that have not been around for many generations, to allow
new solutions a chance to develop into potentially good
solutions before being dominated by existing Trees. This
consideration helps to maintain some exploration dynam-

2



A

B

Figure 1: (A) An example of syntax tree mutation. (B) An
example of syntax tree crossover.

ics in the Population, rather than quickly converging to the
first decent solution it finds. Considering these three di-
mensions for measuring the “goodness” of a syntax tree,
we will say that a tree is “non-dominated” if no other tree
in the Population has lower fitness and lower complex-
ity and is younger. Non-dominated trees define a “Pareto
Front”, which the Population stores. Note that in report-
ing the Pareto front, I will collapse the age dimension, as
this dimension exists purely for maintaining exploration.
All of the current fittest and simplest solutions are usually
of most interest at any given time during the Population
iteration. I assume that all trees in the Pareto front at a
given time are of equal “goodness” as solutions for the
purpose of the evolution.

The next generation of a Population is given initially
by the members of the Pareto front of the previous gen-
eration. Next, babyPopSize new Trees are generated at
random and added to the new generation. babyPopSize
should be relatively small compared to popSize. This
measure aims to maintain some solution exploration. Ad-
ditional Trees are created in the new generation by ran-
domly selecting individual Trees from the Pareto front
with probability mutationRate for mutation, or, with prob-
ability 1-mutationRate, selecting pairs of Trees from the
Parteo front at random which are used to produce a new

Tree using crossover. To mutate a Tree, we first randomly
select a node. If that node is a leaf, then the variable
stored in that node is changed to a randomly selected ter-
minal from the library. Otherwise, the variable stored in
the node is changed to a randomly selected function from
the library. In general, mutation provides an exploration
dynamic. Crossover is implemented using two Trees by
randomly selecting subtrees in each syntax tree and swap-
ping the subtrees. In general, crossover provides an ex-
ploitative dynamic and tends to drive the population to
converge on a single solution.

Finally, a GP type is used to control the global prop-
erties and dynamics of the algorithm, and allows explo-
ration of the resulting solutions. If the GP algorithm is
run serially, then the GP type is really a wrapper for the
Population type. Otherwise, the GP type is responsible
for initializing the independent Populations on each avail-
able process, and for organizing the communication be-
tween them. In particular, the GP type will implement
migration when running in parallel. Migration should oc-
cur infrequently and serves to maintain some exploration
among all of the Populations by sharing good solutions
between Populations in an effort to dissuade premature
convergence to local optima. Each Population has a tar-
get Population, which it sends a small number of ran-
domly selected Trees from its local Pareto front, and a
source Population, from which good Trees are received
and added to the local Pareto front for at least the next
generation, such that the Populations form a cyclic net-
work. The migrate property of the GP type determines
how many independent Population iterations should oc-
cur between migrations.

3 Sample Runtime Results:

We define our input variable X as [0 : 50 : 2π], and our tar-
get variable Y = (X − 1)sin(2X). Let’s assume X and Y
represent two variables for which we have observational
data. Our task is to produce a model that expresses Y as a
function of X . Naturally, we turn to genetic programming
in Julia.

We use the @everywhere macro to make sure the Ge-
neticProgramming.jl file is included on all processes, and
to make sure that X and Y are defined on all processes.
Next, we will define a gpLibrary, which contains the in-
gredients with which to construct syntax trees. We only
need to define the library locally; the GP type will handle
the distribution of the library if running in parallel.

3



Next, we must decide on a fitness function to minimize.
The fitness function only needs to measure the error be-
tween a solution and the target signal. We will opt to use
the root-mean-squared error here.

Now we initialize a GP instance to run in serial with a
50% mutation rate and a population of size 200. We then
run the GP for 1000 generations and look at the resulting
Pareto front (note: the age dimension is collapsed).

Alternatively, we can make use of the parallel island
model GP by initializing a separate GP instance with mul-
tiple islands.

Notice that the runtime is actually slower than the serial
run despite iterating the same number of generations and
using populations of the same size. However, the slight
runtime penalty is to be expected because of migration
among the populations. Recall also that the goal of the
parallel island model is not to simply improve runtime, but
to improve the overall performance of the solution search
by utilizing parallel processing without incurring too great
of a runtime penalty.

Figure 2 compares the resulting populations and Pareto
fronts from the serial GP and the parallel island model GP.
We see that the island model GP produces a denser Pareto
front, indicating that more exploration was performed by
the island model GP. Furthermore, the island model GP
found solutions with lower fitness (ie. better fit to the tar-
get signal). We can see this again when we compare the
fittest solutions from the serial GP to the fittest solution
from the island model GP. However, we should note that
usually the most useful solutions are located at the apex of
the Pareto front, rather than at the ends, since this solution
should have a good blend of fitness and simplicity.

4 Future Work
Of course there are several ways to improve the work I
have done. The research field around genetic program-
ming, and evolutionary algorithms on a broader scale, is
very active, and new ideas and implementation details are
emerging regularly. Additionally, it should be unsurpris-
ing that problem specific optimizations arise as well. Here
are some features I would add to my GP implementation
in Julia:

• modern GP implementations for symbolic regression
typically only allow parameters and variables as ter-
minals for the syntax trees. A parameter optimiza-
tion algorithm is run on each syntax tree every few
generations. This additional step slows down the GP
algorithm a little bit, but it allows the GP to focus
on optimizing functional form instead of parameter
fitting.

4



0 2 4 6 8 10
Number of Nodes

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Fi
tn

e
ss

Generation: 1000

A

0 5 10 15 20 25
Number of Nodes

0.6

0.8

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Fi
tn

e
ss

Generation: 1000

B

C D

Figure 2: A comparison of serial GP to parallel island model GP results. (A) The final Pareto front from the serial GP.
(B) The final global Pareto front from the island model GP. (C) The solution with the lowest fitness from the serial GP.
(D) The solution with the lowest fitness from the island model GP.

• a tactic to combat tree bloat is to occasionally con-
dense the syntax trees. This means taking a syntax
tree and replacing subtrees with the value that the
subtree evaluates to. Typically, one only does this
for subtrees not containing a variable as a leaf node.

• GPs can theoretically be used for a wide variety of
problems beyond symbolic regression. For exam-
ple, GP have been used in research for automatic
program debugging [7, 8]. Generally speaking, we
could imagine using GPs to address problems with
data structure as terminals and any function, such as
for-loops or if-else statements, as the variables stored
in non-leaf nodes. It would be interesting to add this
capability to the genetic programming Julia library
for accomplishing tasks like evolving a sorting algo-
rithm or code debugging.

• another way to measure the complexity of a syntax
tree is to assess how expensive it is to evaluate each
function it contains, or perhaps measure the difficulty
of interpreting a function in the context of the prob-

lem. Therefore, one nice addition would be the op-
tion for the user to define a cost for each function
in the library which would be used to calculate the
complexity of the syntax trees.

References

[1] Thomas Bäck. Evolutionary algorithms in theory and
practice: evolution strategies, evolutionary program-
ming, genetic algorithms. Oxford university press,
1996.

[2] Guohua Wu, Witold Pedrycz, PN Suganthan, and
Rammohan Mallipeddi. A variable reduction strategy
for evolutionary algorithms handling equality con-
straints. Applied Soft Computing, 37:774–786, 2015.

[3] Catherine A Bliss, Morgan R Frank, Christopher M
Danforth, and Peter Sheridan Dodds. An evolution-
ary algorithm approach to link prediction in dynamic

5



social networks. Journal of Computational Science,
5(5):750–764, 2014.

[4] Michael Schmidt and Hod Lipson. Distilling free-
form natural laws from experimental data. science,
324(5923):81–85, 2009.

[5] Darrell Whitley, Soraya Rana, and Robert B Heck-
endorn. The island model genetic algorithm: On sep-
arability, population size and convergence. Journal
of Computing and Information Technology, 7:33–48,
1999.

[6] Yue-Jiao Gong, Wei-Neng Chen, Zhi-Hui Zhan, Jun
Zhang, Yun Li, and Qingfu Zhang. Distributed evolu-
tionary algorithms and their models: A survey of the
state-of-the-art. Applied Soft Computing, 2015.

[7] Westley Weimer, ThanhVu Nguyen, Claire Le Goues,
and Stephanie Forrest. Automatically finding patches
using genetic programming. In Proceedings of the
31st International Conference on Software Engineer-
ing, pages 364–374. IEEE Computer Society, 2009.

[8] John R Koza. Evolving a computer program to gener-
ate random numbers using the genetic programming
paradigm. In ICGA, pages 37–44. Citeseer, 1991.

6


	Introduction
	GP implementation in Julia
	Sample Runtime Results:
	Future Work

