Genetic Programming for Julia:
fast performance and island model implementation

Morgan R. Frank
What is Genetic Programming?

• Evolutionary computation refers to a collection of algorithms that solve problems using biological evolution

• pick a problem and model potential answers as genotype, and their ability to solve the problem is the phenotype

• implement genetic mutation, genetic crossover, and selection pressure to find good solutions

• see GeneticAlgorithm.jl

• Genetic Programming is one such algorithm that represents answers as syntax trees
What is Genetic Programming?

We restrict ourselves to symbolic regression
GP: Algorithmic Flow
in serial

Create initial population

evaluate fitness of each solution

identify parents

use mutate

use crossover

collect new generation

iterate
GP: Parallelization with Island Model

• pieces of serial GP can be implemented with embarrassingly parallel methods
 • requires frequent communication between processes
• serial GP can converge prematurely
• want efficiency and to maintain exploration
GP: Parallelization with Island Model

• each process runs an independent GP population, called an island

• infrequently, each island randomly selects a few good solutions to send to another island.

 • call this process “migration”

• almost embarrassingly parallel, but with infrequent communication of only a little data

• migration discourages individual populations from prematurely converging

 • ie. more exploration of solution space
An Example using GP

Serial Island Model
Future Work

• parameters and parameter optimization instead of constant terminals

• combat tree bloat by occasionally condensing syntax trees

• extend GP capability in Julia to handle more than just symbolic regression

• ex: GP for debugging, or for algorithmic generation