
Parallel Computing Project Proposal

Morgan R. Frank

October 18, 2015

Genetic programming (GP) is an evolutionary algorithm for creating mod-
els that predict an output variable given input data. Like all evolutionary
algorithms, GP utilizes biological genetics as a paradigm for problem solving
by treating syntax trees as genomes and their ability to match a target variable
given input data as the phenotype. While many different learning algorithms
exist for pursuing this same goal, genetic programming, and evolutionary al-
gorithms in general, are appealing because of the widely understood principles
they are based on. Namely, almost everyone has taken a biology class that
highlighted the role of genetic crossover and genetic mutation as the driving
mechanisms for solving one of the greatest problems: how to be a better organ-
ism.

The algorithm begins with an initial population of syntax trees and a fit-
ness function which takes a syntax tree as input and produces a nonnegative
real number representing the tree’s ability to reproduce a desired output. In
the most basic version of GP, new generations of syntax trees are created from
the previous generation of trees using a combination of genetic mutation and
crossover after applying selection pressure through the fitness scores. Muta-
tion is implemented by randomly changing a node on the syntax tree, while
crossover is implemented by choosing two “fit” parent trees and swapping ran-
domly selected subtrees. More complicated GP implementations usually apply
additional selection pressure for the complexity of the model (ie. the depth of
the syntax tree) and the age of a solution (ie. how many generations a syntax
tree has been in the population). Combining all of these selection pressures
yields an algorithm that produces accurate and simple models, while maintain-
ing the appropriate proportion of exploration and exploitation within the GP
population.

One can emphasis these two desirable dynamics by making use of parallel
computation in a nontrivial way. If we run independent GP algorithms on each
core (or node, if using a cluster) and occasionally allow migration of fit syntax
trees from their population, or “island”, to another parallel population, then we
can potentially improve the aggregate performance of the island model GP by
allowing individual islands to optimize an area of search space, while still imple-
menting some exploration through this migration process. This model is highly
scalable since we can add an arbitrary number of islands, and adding additional
islands only serves to improve the aggregate performance of the island model

1



GP.
I plan to implement the island model GP in Julia. The resulting imple-

mentation should allow for easy transition from a multi-core computer to a
distributed compute cluster. GP is an intriguing and flexible learning algorithm
for a variety of problems, from symbolic regression to evolving algorithms, and
I believe my project could lead to an interesting addition to the Julia library.

2


