
Parallel Graph Algorithms in Julia

Julian Kates-Harbeck

December 9, 2015

Abstract

We use the generic problem of Monte-Carlo simulation of stochastic graph algo-
rithms to illustrate fine-grained multi-threading and coarse-grained multi-processing
in Julia [1]. In the process we develop an automatic cluster management tool to dis-
tribute processes to cores across different machines. We develop multi-processing and
multi-threading versions of our algorithms that are able to fully utilize the hardware at
their disposal and achieve significant speedups over serial code. We also identify several
challenging bugs and issues in the multi-processing and multi-threading components
of the Julia language. The most important issues are submitted to Github as issues
#14343 and #14344 in order to help with language development.

1 Introduction and Background

Our toy computational problem is concerned with the dynamics of generic “infections” on
graphs. The goal of such a model is to give a realistic yet general representation of an
infection process on a network. Each node of the graph is either in an infected (I) state
or a susceptible (S) state. The transitions between these states happen probabilistically,
where the probabilities can depend (nonlinearly) on the fraction of neighbors of each type.
An example application might be the transmission of an infectious disease across a social
network. The probability of a person (a node on the graph) becoming infected by their
contacts (represented by neighbors on the graph) depends in some capacity on the number
of their contacts carrying an infection. For example, here are the transition probabilities
during a short time step dt used in our specific model:

1



PI→S = (1 − y)yβdt (1)

PS→I = (1 − y)y2αdt

Where y represents the local fraction of infected individuals, and α and β are parameters.
The process we are considering might also be applied to other dynamical “infections” on
graphs, such as the spread of a language pattern or a behavior across a social network,
the spread of strategies among players of a game, or the spread of genes in an evolving
population.

Since the process is stochastic, we are generally interested in the statistics of the infection
process. Two important characteristics are the fixation probability Pfix of the infection,
i.e. the probability that all nodes in the graph become infected, and the distribution over
infection sizes. We define the infection size w as

w =

∫ ∞

T=0

n(t)dt

where n(t) is the current number of infected individuals. The distribution P (w) is then
indicative of how frequently infections reach a certain size. We typically seed an infection
with a single infected individual among all susceptible individuals. Using the micro-dynamics
of the infection (i.e. the infection probabilities of a given node given its neighbors’ types,
like equation 1), we can make predictions for Pfix and P (w).

In order to test these analytical predictions, it is of course necessary to run the model
many times & 105 such that good statistics for Pfix and P (w) may be extracted.

2 Algorithms

Equation 1 naturally suggests the following algorithm for simulating our model. On a high
level, we run our graph simulation many times in order to obtain statistics over the runs, as
seen in code example 1.

results = map(run_graph_simulation,1:num_trials)

#analyze results...

Code Example 1: Monte Carlo Algorithm

On a lower level, we update every node in small time increments, applying transitions
according to the transition probabilities shown in equation 1. In particular, we update all
nodes in parallel, given the state of all nodes at the previous time step. While this requires
a copy of the “old” state of the graph at every time step, it also makes the updates of the
individual nodes independent of each other, as seen in code example 2. This is in the same
spirit as the Jacobi relaxation method [3] for solving Laplace’s equation.

2



1 for t in 1:T

2 new_types *= 0

3 update_graph(g,new_types)

4 end

5

6 function update_graph{P}(g::Graph{P},new_types::Array{P,1})

7

8 #OUTER LOOP

9 for v in vertices(g)

10

11 if get_type(g,v) == INFECTED

12

13

14 #INNER LOOP

15 #possibly infect neighbors

16 for w in neighbors(g,v)

17 if get_type(g,w) == SUSCEPTIBLE

18 x = get_infected_neighbor_fraction(g,w)

19 p::Float64 = p_birth(x)

20 if rand() < p

21 #WRITE OPERATION

22 new_types[w] = INFECTED

23 end

24 end

25 end

26

27 end

28 end

29 set_types(g,new_types)

30 end

Code Example 2: Simplified Graph Algorithm

The two algorithms shown illustrate two very common patterns in parallel computing
problems. The first is Monte Carlo simulation or sampling. Here we repeat an operation or
simulation many times, where each run is independent, and aggregate the results. The second
is an iterative graph algorithm, where we perform several “passes” over a complicated data
structure1, where each pass touches every component of the data structure independently
and performs possible updates. It is important to note that iterations depend on previous
iterations, but within an iteration, all operations are independent. In our case, in the loop
over vertices in line 9, all loop iterations are independent. However, in the loop over times

1In our case updating the states of the nodes on a graph, but this could also be a grid over which we are
computing a stencil relaxation, or a network for which we are computing PageRank scores.

3



Figure 1: An illustration of the two types of parallelisms needed in our application.

steps, each time step depends on the previous one.
It is clear that both patterns lend themselves to parallelization, although the ideal way

in which to parallelize these algorithms will differ, as shown in figure 1. In particular,
MC sampling involves running many computationally expensive tasks independently of each
other. This means that if we simply spawn a new process for every run, the overhead of
spawning a process is dwarfed by the cost of the actual simulation. This allows us to use
multi-processing to run the MC trials in parallel. On the other hand, processing each node in
the graph algorithm might only involve little computational cost. Moreover, the graph itself,
the type information for the nodes, and access to writable memory for updating the types
must be available to all parallel workers. Thus, it will be prohibitive to duplicate memory
across different processes and to spawn a process to do only a small amount of work. We thus
require a very lightweight parallelization model, and chose to work with multi-threading2.
Threads are perfect for this task as they can access shared memory without duplication of
the data structures and because they are very cheap to spawn.

In the following sections we will describe in more detail the steps we took to achieve high
performance in our code, including serial optimization, parallelization using coarse-grained
multi-processing, and parallelization using fine-grained multi-threading.

3 Serial Code

We had initially written our simulation code in Python, using the NetworkX graph library
[2]. In the context of this project, the first step was thus to rewrite the code in serial
Julia. Since we are dealing with graphs involving changing properties on the nodes, the first
step was to use a simple translation of our python code into Julia using the Graphs.jl3

package. In particular, Graphs.jl is described in its documentation as being inspired by
NetworkX. The translation was straightforward, given the similarities between Python and
Julia. Using Julia’s profiling tools, we then went to optimize the Julia code in a manner

2We also tried using multi-processing for this fine grained parallelization task. However, the massive
overhead of communicating and sharing data caused a significant slowdown and convinced us of the need for
a more lightweight multi-threading approach.

3https://github.com/JuliaLang/Graphs.jl

4



Figure 2: Serial running time on the benchmark graph problem described in the text. Mov-
ing from Python to Julia results in an order of magnitude cut in running time. However,
optimizing Julia using a profile-optimize cycle resulted in another comparable speedup. The
execution times are 920 ms, 89 ms, and 15 ms, respectively.

similar to Assignment 2 of this course. This entailed running the code, profiling it, finding the
most time-consuming portions, and rewriting them to run faster. One important bottleneck
was the iteration over neighbors as in line 16 of the simplified code sample 2 (but in the
inner loop of get infected neighbor fraction(). We found that the Graphs.jl package,
in order to provide flexibility to the user, added significant overhead to such operations. A
leaner and simpler graph data structure is provided by LightGraphs.jl4, where the graph
is stored simply as an array of Int arrays (an array of neighbor lists). This results in much
faster iteration and thus removes the main overhead in our code. We show the speedups
on a benchmark problem of calculating the infected neighbor fraction (as in line 18 of the
sample code) for all nodes on an Erdos-Renyi random graph with 2000 nodes and 1900 edges
per node. The results are presented in figure 2. We find a speedup by a factor of about 10
simply by translating Python to Julia. Remarkably, by optimizing our Julia code in a few
places, including mainly the switch to LightGraphs.jl, we achieve another factor of ∼ 6
speedup!

4https://github.com/JuliaGraphs/LightGraphs.jl

5



4 Coarse-Grained Parallelization: multi-processing

It might seem initially that the problem of parallelizing across MC simulation instances is
a trivial problem. Indeed the iterations are completely independent of each other and are
coupled only in the final step of aggregating the statistical data, which represents a tiny
fraction of the overall computational work. Thus, in an idea world, we would simply replace
the map operation from code example 1 with a parallel pmap.

In Julia, pmap distributes the workload across all available processes in parallel and
aggregates the results. Thus, once we have correctly configured our processes, this is indeed
the only step we need to take to parallelize our code. However, there are two caveats:

• It is not trivial to correctly allocate one process to every available core on demand.

• The sharing of memory among different processes can be tricky.

These two issues represent the main hurdles to multi-processing in our problem, and we
will describe our solutions in the following sections.

4.1 Automatic Multi-Process Management

For ideal performance, we generally want to allocate a single process5 per core in our com-
puting environment. In a fixed environment, like a small personal computer or a small lab
cluster, it is possible to use addprocs commands with explicit host names and explicit num-
bers of cores per host to allocate the processes. One has to essentially “hard code” these
host names and the number of cores per machine into the application. While this might be
feasible for a small, personal computing environment, it is unscalable, inflexible for changes
in the environment, and simply unfeasible for large or shared computing environments.

We use a large, shared computing cluster6 as an example environment to develop a
more general and scalable solution to this problem. Ideally, we want the user to be able to
specify nothing but a number of processes, such that our automatic tool will handle correct
allocation of these processes across different cores and machines. One challenge is that in
a shared computing environment we might have access to a number of cores potentially
distributed across different machines, and that this allocation can differ for every session on
the shared cluster.

Our test cluster works with the SLURM resource manager. This allows a general solution
of the following form:

• Use SLURM environment variables7 to obtain the details of the current allocation,
i.e. which machines (by host name) we have access to, and how many cores on each
machine.

• Read a specified number of processes from the user

5or in the case of hyper-threading, some small constant number of processes
6the Odyssey computing cluster at Harvard
7In this case SLURM NODELIST and SLURM JOB CPUS PER NODE

6



• Find an Appropriate distribution of these processes onto the machines and cores that
we have access to.

• Pass this information into an explicit call to addprocs() to actually add the processes
in the right places.

A general allocation library would simply re-implement the first step to fit whichever
resource manager is used (if other than SLURM). We implemented these steps in pure Julia.
The result for the user is illustrated in figure 3. As desired, the user only has to worry about
how many processes he wants, the rest is handled by the allocation manager.

4.2 Results

In this section, we use our multi-processing tool to distribute workloads of the form shown
in code example 1 to processes on cores across several different machines. In particular, we
are working with an allocation on the Harvard Odyssey cluster. Every machine has 64 cores,
a subset of which are allocated to us. We choose an allocation of a total of 256 cores, which
will then be distributed across at least 4 machines8. Since our actual infection algorithm is
stochastic in nature, it has wildly varying run times. To give a more reliable study of timing,
we choose a simpler workload of the form shown in the code example 3.

1 #O(N^3)

2 @everywhere myfun(N,M) = sum(randn(N,M)*randn(M,N))

3

4 map(N -> myfun(N,N),repmat([N],250)) #serial

5 pmap(N -> myfun(N,N),repmat([N],250)) #parallel

Code Example 3: The simple workload used to test multi-processing performance.

The scaling of this workload with N is O(N3). We run this workload for various numbers
of processes and for various values of N . The results are shown in figures 4 and 5. We expect
the ideal scaling to go as ∼ N3

nprocs
. In figure 4 we compare the true scaling with nprocs (solid

lines) to the ideal scaling (dashed lines) for various values of N . In figure 5 we summarize
this data in a log-log plot, for which the ideal scaling with N3 and nprocs lies on a plane
(red). We find that in general the true scaling is well predicted by the ideal scaling, with
the main difference being that for small problem sizes, the speedup plateaus with increasing
number of processes.

Two observations are important to point out. First, we find that the scaling becomes
closer to ideal (∼ 1

nprocs
) the larger N becomes. This is as expected, since we are performing

more work on each of the processes as compared to the overhead of sending data around
and synchronizing the processes. Second, we find that the maximum speedup obtained is
114.5×, which importantly is significantly greater than 64× (the maximum speedup possible
with one machine). This means that we are utilizing processes on more than one machine

8In our case, the cores per machine are 56, 16, 64(×2), and 56 on a total of 5 machines.

7



(a) Example allocation (b) Small number of processes

(c) Large number of processes (d) Full process allocation

Figure 3: An illustration of the automatic multi-process management package that we de-
veloped. (a) shows an example of a possible SLURM allocation. We have received a total of
144 cores distributed as shown over nodes “n1” (64 out of 64 cores), “n2” (32 out of 64 cores)
and “n3” (48 out of 64 cores). The dashed outline represents the 64 cores on each machine,
while the blue box represents our example SLURM allocation. Julia processes running on
a core (always one process per core) are shown in red. (b) shows the syntax for adding a
small number of processes (20). These processes fit on one node and are allocated as shown
in the image. (c) shows a larger allocation request for 100 processes, which don’t fit on a
single machine. The machines are filled up one by one until all processes have their own
core. Finally, (d) shows the shortcut syntax for allocating a process to every available core.

8



in parallel, which shows that our allocation procedure is indeed distributing one process per
core on many different machines. We expect this scaling to continue even for much larger
numbers of processes, given sufficiently large workloads.

4.3 Implementation Issues and Bugs

In addition to proper process allocation, the second hurdle to simply using pmap instead of
map in order to parallelize our MC simulations was the proper handling of data sharing across
all processes. Since the Julia documentation is often not entirely up to date on describing
the details of these issues, it took many iterations of trial and error in order to obtain a
functioning solution. This part took up the largest share of development time in the multi-
processing component of the project. We list here some of the most challenging bugs and
issues that complicated the migration to pmap, as well as our solutions to these issues.

It is key that all processes running the desired function have access to the data referenced
by this function. This includes runtime data as well as code and modules.

Modules For modules that are used on other processes, we found the following procedure
to work well. First, import the module with using <modulename> on the master process.
Then add all other processes using addprocs() and finally import the module on all processes
with @everywhere using <modulename>.

Data and Functions For data that is used on other processes, we must distinguish several
different types. Functions that are used on other processes that have not been defined in
one of the modules that have been imported everywhere need to be annotated with the
@everywhere macro. Data that is passed into these functions by the pmap operation does
not need to be declared @everywhere. Data that is captured as arguments in a curried
function (which in turn is passed as the first argument to pmap) does need to be declared
@everywhere.

In code example 4, we give a minimal example illustrating these issues. This has been
submitted as Github issue #14344 to the main Julia language project.

5 Fine-Grained Parallelization: multi-threading

We now turn to the issue of parallelizing within a graph simulation, as opposed to across
several simulations. This is fundamentally a harder problem from an algorithmic point
of view. However, in theory, our test problem again lends itself to simple parallelization.
Inspection of the relevant algorithm (code example 2) shows that the treatments of the
vertices in the for loop on line 9 are independent of each other. This means that we can
use a threaded parallel for loop in this case. The only issue is that we are (potentially)
writing to the common data structure new types on line 22. We thus have to lock the
data structure upon writing. All other operations are either reads from a common data
structure or independent computations and can be left untouched9. Thus, in an ideal world,

9The function get infected neighbor fraction() looks at all the neighbors of a vertex and computes
the fraction that are infected, which is also simply a set of read operations and a computation.

9



(a) linear scale

(b) log-log scale

Figure 4: Execution time versus number of processes for various problem sizes. We achieve
a maximum speedup of over 100×. See text for details.

10



(a) view from left (b) view from right

Figure 5: Execution time (blue) versus number of processes and problem size. All axes are
logarithmic, such that the ideal scaling becomes a hyperplane (red). See text for details.

1 addprocs(2)

2

3 #no @everywhere required

4 Nlist = repmat([1000],10)

5

6 #define function to execute

7 #will not work without @everywhere

8 @everywhere myfun(N,M) = sum(randn(N,M)*randn(M,N))

9

10 #define some local variable

11 #will not work without @everywhere

12 @everywhere M = 1000

13

14 #map over curried function: make sure all captured variables are defined @everywhere!

15 @time pmap(N -> myfun(N,M),Nlist)

Code Example 4: Illustration of potential multi-processing issues. Nlist is used as the
second argument in pmap and does not need to be declared @everywhere. However, the
information about myfun() as well as the variable M need to be known to all other processes
such that the curried function constructed as the first argument to pmap is well defined on
all remote processors. Therefore we do need @everywhere statements when declaring these
two. This has been as Github issue #14344.

we would simply add @threads all to the for loop in line 9, as well as a paired lock!()

and unlock!() statement around the write operation on line 22. This would then parallelize

11



the code. While the final functioning code indeed does this, there are again several bugs
and issues that came up in the development phase that took up most of the development
time. We present a simplified version of the thread parallel code in code example 5. The
only changes are on lines 7,9 and the lock!() - unlock!() statements around line 23.

1 for t in 1:T

2 new_types *= 0

3 update_graph(g,new_types)

4 end

5

6 function update_graph{P}(g::Graph{P},new_types::Array{P,1})

7 m = Mutex()

8 #OUTER LOOP, CHANGED

9 @threads all for v in vertices(g)

10

11 if get_type(g,v) == INFECTED

12

13

14 #INNER LOOP

15 #possibly infect neighbors

16 for w in neighbors(g,v)

17 if get_type(g,w) == SUSCEPTIBLE

18 x = get_infected_neighbor_fraction(g,w)

19 p::Float64 = p_birth(x)

20 if rand() < p

21 #WRITE OPERATION

22 lock!(m)

23 new_types[w] = INFECTED

24 unlock!(m)

25 end

26 end

27 end

28

29 end

30 end

31 set_types(g,new_types)

32 end

Code Example 5: Simplified Graph Algorithm, thread parallel version. The only changes to
the non-parallel version (code example 2) are on lines 7,9 and the lock statements around
line 23.

12



5.1 Results

In this section we test the performance of our multi-threaded code (as shown in 5) on
the actual graph algorithm. We work with an 80 core machine, which is subdivided into
units of 8 cores. We thus expect ideal “nice” scaling behavior up to 8 threads and some
data/communication overheads beyond that. The nature of the algorithm makes this an
O(N2) workload with N being the number of nodes in the graph. We run this workload for
various numbers of threads and for various values of N . The results are shown in figures 6
and 7, equivalently to figures 4 and 5. We expect the ideal scaling to go as ∼ N2

nthreads
. In

figure 6 we compare the true scaling with nthreads (solid lines) to the ideal scaling (dashed
lines) for various values of N . For all problem sizes, increasing to up to 4 threads results in a
gain. For small problem sizes, the overhead caused by additional threads increases running
time. For large problem sizes, we have linear scaling until about 8 threads, as expected,
above which the hardware limits the additional gains. We plateau at a maximum speedup
of ∼ 11.5× > 8. In figure 7 we summarize this data in a log-log plot, for which the ideal
scaling with N2 and nprocs lies on a plane (red). We find that in general the true scaling is
somewhat well predicted by the ideal scaling, with the main difference being the departure
due to overheads (for small problem sizes) and hardware limitations for small N and large
nthreads.

5.2 Implementation Issues and Bugs

The threading package in Julia is still in a very preliminary form. Yet, as it has recently
been merged into the master branch, we were able to compile a version of Julia 0.4 that
supports threading. Our development process then involved adding the simple parallelization
statements as in code example 5. The bulk of the work then followed in the form of debugging
the resulting code until it actually worked. We give here a summary of the threading bugs
and issues that we encountered in getting the code to function.

• All errors, bugs (including Julia syntax errors!) within a threaded block are silently
ignored. Every time there is any exception, syntax error, or other problem within
a threaded section, the threaded section will simply not execute (or give undefined
behavior). This can be a very confusing bug when it comes up unexpectedly.

• Any time global state is modified by threads, the behavior is buggy. It can lead
to undefined behavior, segmentation faults or other problems. For example, each
thread needs its own random number generator (because the Julia RNG requires global
state). Another example is that it is not possible to print inside a threaded region,
which complicates debugging immensely. Anytime a variable’s type is unclear, the
program breaks.

• Calling functions between a lock!()-unlock!() pair can lead to problems (including
segmentation faults).

• Calling anonymous or curried functions anywhere inside a threaded region can lead
to problems (including segmentation faults). However, locally defined functions are
fine. We illustrate this in code example 6.

13



(a) linear scale

(b) log-log scale

Figure 6: Execution time versus number of threads for various problem sizes. We achieve a
maximum speedup of over 10×. See text for details.

14



(a) view from left (b) view from right

Figure 7: Execution time (blue) versus number of threads and problem size. All axes are
logarithmic, such that the ideal scaling becomes a hyperplane (red). See text for details.

• Many of the above issues are unpredictable. This means that the issue may arise, but
doesn’t necessarily always do so. This can lead to so-called Heisenbugs, which some-
times appear and sometimes do not, unpredictably. In our development, a segmentation
fault resulting from calling an anonymous function inside a threaded block only oc-
curred about 1 in 105 times! One can imagine that this makes debugging extremely
difficult.

We illustrate one particularly difficult issue with calling functions inside a threaded block
in a minimal code example 6. This has been submitted as Github issue #14343 in the main
Julia language repository.

6 Conclusion

In this project we used two archetypal problems in computing, namely Monte-Carlo simu-
lation and iterative graph algorithms to test and illustrate Julia’s parallel computing capa-
bilities, both in a coarse-grained multi-processing setting with distributed memory, as well
as in a fine-grained multi-threading setting with shared memory. We developed an auto-
matic process management tool for allocating processes efficiently in a cluster environment,
without the need to hard code these allocations. This is particularly useful on large, shared
machines with changing allocations.

Along the way, we had to deal with incomplete or misleading documentation, undocu-
mented bugs, and many challenging issues in getting the multi-threading and multi-processing
to work. We are hopeful that continued development in the Julia project will alleviate these
difficulties for future projects using multi-threading and multi-processing. To help in this
process, we have submitted some of the most challenging issues as Github issues #14343
and #14344 to the Julia language project.

15



1 type CarryFunction

2 fn::Function

3 end

4

5 alpha = 0.1

6 fn(x) = alpha*x

7

8 function use_anonymous(N::Int, c::CarryFunction)

9 a = zeros(N)

10 @threads all for i in 1:length(a)

11 # a[i] = fn(i) #NO SEGFAULT

12 a[i] = c.fn(i) #SEGFAULT (sometimes... but not always!)

13 end

14 println(a[1],a[end])

15 end

16

17 length = 10000

18 repetitions = 100

19 for j = 1:repetitions

20 use_anonymous(length,CarryFunction(fn))

21 end

Code Example 6: A minimal example of how to avoid an insidious threading bug. The
two statements on lines 11 and 12 perform the same work. However, in the upper case,
the function is simply a locally defined function. In the lower case, the function is data as
part of a type. When the function is data, it sometimes leads to segmentation faults. In
the upper case, the code runs without problems. This has been submitted as Github issue
#14343.

Our results show that both the multi-processing and multi-threading codes are truly tak-
ing advantage of their full hardware potential (several cores across several different machines
in the multi-processing case, and all cores on a single machine in the multi-threading case).
Putting all our speed improvements together, we achieved a 60× speedup by moving from
python to optimized serial Julia, a ∼ 12× speedup by using multi-threading to parallelize
our graph algorithm on an 80 core machine, and a ∼ O(X) speedup when parallelizing our
Monte Carlo trials across X cores on several different machines in a cluster (in our case
X ∼ 100, but in general unlimited). Overall, if we had access to ∼ 100 machines of 64 cores
each, we can thus expect 60 × 10 × 100 ∼ 4 − 5 orders of magnitude speedup when running
on all 64 threads on ∼ 100 machines as compared to our original, serial python code.

16



7 Acknowledgments

This work was produced as an assignment for the course 6.338 at MIT, Fall Semester 2015-
2016. We thank Prof. Alan Edelman and the Julia development team at MIT CSAIL for their
support in this project in the form of advice, encouragement, and access to computational
resources.

References

[1] Jeff Bezanson, Stefan Karpinski, Viral B Shah, and Alan Edelman. Julia: A fast dynamic
language for technical computing. arXiv preprint arXiv:1209.5145, 2012.

[2] Daniel A Schult and P Swart. Exploring network structure, dynamics, and function using
networkx. In Proceedings of the 7th Python in Science Conferences (SciPy 2008), volume
2008, pages 11–16, 2008.

[3] James Hardy Wilkinson, James Hardy Wilkinson, and James Hardy Wilkinson. The
algebraic eigenvalue problem, volume 87. Clarendon Press Oxford, 1965.

17


