

Parallel Graph Algorithms in Julia

MIT 6.338

Julian Kates-Harbeck

Outline

1) Introduction

2) Coarse grained parallelization: mulitprocessing
(shared + distributed memory)

3) Fine grained parallelization: multithreading
(shared memory)

Speedup Progression

● Rewrite in Julia (Graphs.jl) of Python algorithm
(Networkx)

➔ ~ 5-10x
● Serial optimization, including LightGraphs.jl

➔ ~ 5-10x

● Parallelism (Focus of this talk!)
➔ > 100x

● Total: ~ 3-4 orders of magnitude!

Introduction
● Graph algorithms and Monte Carlo (MC)

methods are very common
● Our problem

– Many independent Monte Carlo iterations

– Each one is a (complex) graph algorithm
● Think something like PageRank

results = map(run_graph_simulation,1:num_trials)

#analyze results...

Two types of parallelism

Coarse Grained Parallelism Fine Grained Parallelization Needed

results = map(run_graph_simulation,1:num_trials)

#analyze results...

Coarse Grained Parallelism

#results = map(run_graph_simulation,1:num_trials)
results = pmap(run_graph_simulation,1:num_trials)

#analyze results...

In a perfect world, map → pmap

But, we need to manage the processes!

addprocs(N_PROCS)

● How many processes to add?
● How many cores are available?
● What if the cores are on different machines?

Automatic Multiprocess Management

● Ideally

just works for any number of processes.
● Under the hood

– Xi cores per machine i, Y machines

– On a shared cluster, X and Y might differ for each
allocation!

➔ Don't want to hardcode!

addprocs(N_PROCS)

Automatic Multiprocess Management

● Use case: SLURM (Simple Linux Utility for Resource
Management) on Harvard's Odyssey Cluster

– One allocation gives variable number of machines.

– Variable number of cores per machine.

● Solution: Fill up cores on each machine with one processes each,
up to N:

Behind the scenes: Environment Variables

(SLURM_NODELIST, SLURM_JOB_CPUS_PER_NODE)

nl = get_partial_list_of_nodes(N)
addprocs(nl)

Allocation Example

“n1”
64 cores

“n2”
32 cores

“n3”
48 cores

Resource Allocator gives me:

hostname

Allocation Example

“n1”
64 cores

nl = get_partial_list_of_nodes(20)
addprocs(nl)

“n2”
32 cores

“n3”
48 cores

Allocation Example

“n1”
64 cores

nl = get_partial_list_of_nodes(100)
addprocs(nl)

“n2”
32 cores

“n3”
48 cores

Allocation Example

“n1”
64 cores

nl = get_list_of_nodes()
addprocs(nl)

“n2”
32 cores

“n3”
48 cores

Timing Results

64 cores per
machine max.

256 cores total.

This allocation:
• 5 nodes
• cpus_per_node:

56,16,64(x2),56

@everywhere myfun(N,M) = sum(randn(N,M)^2)

map(N -> myfun(N,N),repmat([N],250)) #serial
pmap(N -> myfun(N,N),repmat([N],250)) #parallel

Max speedup: 114.5x > 64

Timing Results

64 cores per
machine max.

256 cores total.

This allocation:
• 5 nodes
• cpus_per_node:

56,16,64(x2),56

Max speedup: 114.5x > 64

Timing Results (cont'd)
Ideal scaling (red)

Max speedup: 114.5x > 64

Multiprocessing Potential Bugs

● Need to define @everywhere:

– Variables, Functions and Modules used in @parallel
● Careful with anonymous/curried functions!

addprocs(2)

Nlist = repmat([1000],10)

#define function to execute
@everywhere myfun(N,M) = sum(randn(N,M)^2)

#define some local variable
@everywhere M = 1000 #will not work without @everywhere!

#map over curried function: make sure all captured variables
are defined @everywhere!
@time pmap(N -> myfun(N,M),Nlist)

Fine Grained Parallelization

Opportunity for
shared memory
parallelism!

Need to lock!

function run_graph_simulation(g::Graph)
 #main simulation loop
 for t in 1:num_timesteps

 #outer loop
 for v in vertices(g)
 result = 0

 #inner loop
 for w in neighbors(g,v)
 #computation
 result =
some_function(result,w)
 end

 #write operation!
 update_node_value(g,v,result)

 end

 end
end

Fine Grained Parallelization Cont'd
function run_graph_simulation(g::Graph)
 #main simulation loop
 m = Mutex()
 for t in 1:num_timesteps

 #outer loop
 @threads all for v in vertices(g)
 result = 0

 #inner loop
 for w in neighbors(g,v)
 #computation
 result = some_function(result,w)
 end

 #write operation!
 lock!(m);
 update_node_value(g,v,result)
 unlock!(m);

 end

 end
end

This is all we need!

…in the future

Timing Results

80 core machine,
with subdivision of
8 cores.

Max speedup: 11.5x

Timing Results

80 core machine,
with subdivision
of 8 cores.

Max speedup: 11.5x

Timing Results (cont'd)
Ideal scaling (red)

Max speedup: 11.5x

Examples of threading bugs:

● All errors (syntax, compiler, runtime) are ignored
during threaded execution... silent no-op.

● Any modification to global state breaks.
– Random number generators

– Type instabilities, etc.

● Can't do too much within lock!() - unlock!() block.
● Functions passed as data break.

– But globally defined functions don't! (→ Example)

Minimal Threading Instability:
type CarryFunction
 fn::Function
end

alpha = 0.1
fn(x) = alpha*x

function use_anonymous(N::Int,c::CarryFunction)
 a = zeros(N)
 @threads all for i in 1:length(a)
 # a[i] = fn(i) #NO SEGFAULT
 a[i] = c.fn(i) #SEGFAULT (sometimes... but not always!)
 end
 println(a[1],a[end])
end

length = 10000
repetitions = 100
for j = 1:repetitions
 use_anonymous(length, CarryFunction(fn))
end

Conclusions

● Developed parallel graph algorithms using
– Cluster Multiprocessing

– Mulithreading
● Also tried multiprocessing for fine grained parallelism: much slower

– Lots of sharing required (shared memory multiprocessing in its infancy)

● Developed general process manager for SLURM clusters
● Speedups indicate full utilization of computing resources by Julia
● Most time spent: debugging parallel code, both multiprocessing

and multithreading
– Cryptic errors messages, unknown culprits (“which line was it anyway?”)

● Binary search!

– Heisenbugs (once every 100,000 runs!?)

– Getting the data parallelism/sharing right.

– Making sure all resources are properly utilized

Questions?

Thank you :)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

