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Outline

1) Introduction

2) Coarse grained parallelization: mulitprocessing 
(shared + distributed memory)

3) Fine grained parallelization: multithreading 
(shared memory)



  

Speedup Progression

● Rewrite in Julia (Graphs.jl) of Python algorithm 
(Networkx)

➔ ~ 5-10x
● Serial optimization, including LightGraphs.jl

➔ ~ 5-10x

● Parallelism (Focus of this talk!)
➔ > 100x

● Total: ~  3-4 orders of magnitude!



  

Introduction
● Graph algorithms and Monte Carlo (MC) 

methods are very common
● Our problem

– Many independent Monte Carlo iterations

– Each one is a (complex) graph algorithm
● Think something like PageRank

results = map(run_graph_simulation,1:num_trials)

#analyze results...



  

Two types of parallelism

Coarse Grained Parallelism Fine Grained Parallelization Needed

results = map(run_graph_simulation,1:num_trials)

#analyze results...



  

Coarse Grained Parallelism

#results = map(run_graph_simulation,1:num_trials)
results = pmap(run_graph_simulation,1:num_trials)

#analyze results...

In a perfect world, map → pmap

But, we need to manage the processes!

addprocs(N_PROCS)

● How many processes to add?
● How many cores are available?
● What if the cores are on different machines?



  

Automatic Multiprocess Management

● Ideally

just works for any number of processes.
● Under the hood

– Xi cores per machine i, Y machines

– On a shared cluster, X and Y might differ for each 
allocation!

➔ Don't want to hardcode!

addprocs(N_PROCS)



  

Automatic Multiprocess Management

● Use case: SLURM (Simple Linux Utility for Resource 
Management) on Harvard's Odyssey Cluster

– One allocation gives variable number of machines.

– Variable number of cores per machine.

● Solution: Fill up cores on each machine with one processes each, 
up to N:

Behind the scenes: Environment Variables

(SLURM_NODELIST, SLURM_JOB_CPUS_PER_NODE)

nl = get_partial_list_of_nodes(N)
addprocs(nl)



  

Allocation Example

“n1”
64 cores

“n2”
32 cores

“n3”
48 cores

Resource Allocator gives me:

hostname



  

Allocation Example

“n1”
64 cores

nl = get_partial_list_of_nodes(20)
addprocs(nl)

“n2”
32 cores

“n3”
48 cores



  

Allocation Example

“n1”
64 cores

nl = get_partial_list_of_nodes(100)
addprocs(nl)

“n2”
32 cores

“n3”
48 cores



  

Allocation Example

“n1”
64 cores

nl = get_list_of_nodes()
addprocs(nl)

“n2”
32 cores

“n3”
48 cores



  

Timing Results

64 cores per 
machine max.

256 cores total.

This allocation:
• 5 nodes
• cpus_per_node: 

56,16,64(x2),56

@everywhere myfun(N,M) = sum(randn(N,M)^2)

map(N -> myfun(N,N),repmat([N],250)) #serial
pmap(N -> myfun(N,N),repmat([N],250)) #parallel

Max speedup: 114.5x > 64



  

Timing Results

64 cores per 
machine max.

256 cores total.

This allocation:
• 5 nodes
• cpus_per_node: 

56,16,64(x2),56

Max speedup: 114.5x > 64



  

Timing Results (cont'd)
Ideal scaling (red)

Max speedup: 114.5x > 64



  

Multiprocessing Potential Bugs

● Need to define @everywhere:

– Variables, Functions and Modules used in @parallel
● Careful with anonymous/curried functions!

addprocs(2)

Nlist = repmat([1000],10)

#define function to execute
@everywhere myfun(N,M) = sum(randn(N,M)^2)

#define some local variable
@everywhere M = 1000 #will not work without @everywhere!

#map over curried function: make sure all captured variables 
are defined @everywhere!
@time pmap(N -> myfun(N,M),Nlist)



  

Fine Grained Parallelization

Opportunity for 
shared memory 
parallelism!

Need to lock!

function run_graph_simulation(g::Graph)
  #main simulation loop
    for t in 1:num_timesteps

        #outer loop
        for v in vertices(g)
            result = 0

            #inner loop
            for w in neighbors(g,v)
                #computation
                result = 
some_function(result,w)
            end

            #write operation!
            update_node_value(g,v,result)

        end

    end
end



  

Fine Grained Parallelization Cont'd
function run_graph_simulation(g::Graph)
  #main simulation loop
  m = Mutex()
    for t in 1:num_timesteps

        #outer loop
        @threads all for v in vertices(g)
            result = 0

            #inner loop
            for w in neighbors(g,v)
                #computation
                result = some_function(result,w)
            end

            #write operation!
            lock!(m);
            update_node_value(g,v,result)
            unlock!(m);

        end

    end
end

This is all we need!

…in the future 



  

Timing Results

80 core machine, 
with subdivision of 
8 cores.

Max speedup: 11.5x



  

Timing Results

80 core machine, 
with subdivision 
of 8 cores.

Max speedup: 11.5x



  

Timing Results (cont'd)
Ideal scaling (red)

Max speedup: 11.5x



  

Examples of threading bugs:

● All errors (syntax, compiler, runtime) are ignored 
during threaded execution... silent no-op.

● Any modification to global state breaks.
– Random number generators

– Type instabilities, etc.

● Can't do too much within lock!() - unlock!() block.
● Functions passed as data break.

– But globally defined functions don't! (→ Example)



  

Minimal Threading Instability:
type CarryFunction
  fn::Function
end

alpha = 0.1
fn(x) = alpha*x

function use_anonymous(N::Int,c::CarryFunction)
  a = zeros(N)
  @threads all for i in 1:length(a)
    # a[i] = fn(i) #NO SEGFAULT
    a[i] = c.fn(i) #SEGFAULT (sometimes... but not always!)
  end
  println(a[1],a[end])
end

length = 10000
repetitions = 100
for j = 1:repetitions
  use_anonymous(length, CarryFunction(fn) )
end



  

Conclusions

● Developed parallel graph algorithms using
– Cluster Multiprocessing

– Mulithreading
● Also tried multiprocessing for fine grained parallelism: much slower

– Lots of  sharing required (shared memory multiprocessing in its infancy)

● Developed general process manager for SLURM clusters
● Speedups indicate full utilization of computing resources by Julia
● Most time spent: debugging parallel code, both multiprocessing 

and multithreading
– Cryptic errors messages, unknown culprits (“which line was it anyway?”)

● Binary search!

– Heisenbugs (once every 100,000 runs!?)

– Getting the data parallelism/sharing right.

– Making sure all resources are properly utilized



  

Questions?

Thank you :)
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