6.338 Final Paper: Parallel Huffman Encoding
and Move to Front Encoding in Julia

Gil Goldshlager
December 2015

1 Introduction

1.1 Background

The Burrows-Wheeler transform (BWT) is a string transform used for data com-
pression and string indexing. It achieves high rates of compression, even better
than common tools like gzip, but at the cost of taking more time to compute.
Though the transform is fundamentally difficult to parallelize, in 2013 and 2014,
Edwards et al discovered effective PRAM algorithms to perform the transform,
and implemented the algorithms on their XMT platform to produce speedups
up to 70 time faster than previous work [I],[2]. Their algorithms involve using
fine-grained parallelism difficult to achieve in many standard programming lan-
guages and difficult to take advantage of on standard processors. Therefore, for
my project, I endeavoured to implement their algorithms in Julia, on a stan-
dard 6 core machine, in order to see how easy it would be to write the code,
and whether speedups could in fact be achieved.

1.2 Specific Aims

The BWT consists of three parts: the block sorting transform, move-to-front
encoding (MTF), and Huffman encoding. I initially wanted to implement all
three portions of the algorithm. However, it became obvious with further re-
search that block sorting transform algorithms, essentially equivalent to suf-
fix array construction, are extremely complicated (even in serial), and that it
would be more than a class project to develop a parallel algorithm for that
portion of the transform. Thus, I focused on adapting the MTF and Huff-
man encoding and decoding algorithms for a standard machine architecture,
and implementing them in julia. Unfortunately, the time bottleneck of the
overall BWT is in fact the block sorting transform, so speedups on the two
parts I studied will not give significant speedups for a full BWT compression
scheme. However, MTF and Huffman encoding are of independent interest, and
will still serve as a good case study of implementing non-embarrassingly par-

allel algorithms in Julia. All code for this project can be found on GitHub at
[https://github.com/ggoldsh/ParallelBWT]

2 Definitions

Definition 1. Let ¥ be the alphabet over which the strings that we wish to
encode are defined. Let |X| = A.

Definition 2. Let IT be the set of integers {0,1,---, A —1}.
Definition 3. Let B be the set {0,1}.

Definition 4. For any set X, let S(X) be the set of all sequences of elements
of X. For example, S(X) is the set of all strings that we can encode.

Definition 5. For any sequence S, let S; be the ith element of S. Let S; ; be
the subsequence of S starting at S; and ending at S;.

3 Serial Algorithms

In this section, I describe the four component algorithms that I implemented:
MTTF encoding, MTF decoding, Huffman encoding, and Huffman decoding. The
full details of all of these algorithms are described in [I], so I will only provide
an overview.

3.1 MTF Encoding

The MTF encoding algorithm maps an element of S(X), called the input string,
to an element T' = MTFE(S) € S(II), called the encoding. We calculate the
encoding as follows. We initialize an auxiliary array L to contain the alphabet
in order. Then, for every character S; of S, we find S; in L, and write out the
index j so that L; = S;. We then move L; to the front of L (hence move-to-front
encoding), and push every character that preceded L; one position back in the
array. For example, we could move 4 to the front of [2,3,4,1] to get [4,2,3,1].
After doing this for every character in S, we obtain an output string 7' € S(II)
which is the MTF encoding of S.

3.2 MTF Decoding

MTF decoding takes in an array 7' € S(II), called the encoded string, and
returns the a string S = MTFD(T) € S(X), called the decoding of T'. Of course,
MTF decoding is defined so that, for any S € S(X), MTFD(MTFE(S)) =S.
To calculate this decoding, we initialize an auxiliary array L to contain the
alphabet in order. Then, for each integer T; in T, we first write down the
character Ly, to our decoding array. We then move Lt, to the front of L, as
in the encoding algorithm, and then proceed to the next character of T. This
produces a decoding S € S(X) and can be easily proven to be the inverse of the
MTF encoding algorithm.

3.3 Huffman encoding

The Huffman encoding algorithm is very straightforward. It takes in an array
S € S(II), called the input array, and outputs an array T = HFE(S) € S(B),
called the Huffman encoding of S. To calculate T', we first count the occurrences
of each element of IT in S. We then build up an encoding tree for the array which
maps each integer in II to a bit string such that no one encoding is a substring
of another. For example, one encoding of {0,1,2,3} would be 0 — 0, 1 — 10,
2 — 111, 3 — 110. The key insight of Huffman encoding is that it is possible
to find the optimal such encoding tree very quickly; however, this part of the
algorithm is not important to my project, so I won’t discuss it here. Finally,
given the coding, we iterate over every element S;, and write its bitstring code
to our output array. This produces our Huffman encoding T'.

3.4 Huffman decoding

The Huffman decoding algorithm takes as input an encoding tree and an input
string T € S(B), and produces as output S = HD(T) € S(II), which is the
Huffman decoding of T'. To calculate S, we first initialize an auxiliary bitstring
C to be the empty string. We then traverse T, adding one bit at a time from
T to C. If, when we add T; to C', C matches a code for some integer x in our
encoding tree, we clear C' and write x to our output array. When we reach the
end of T, we should have an empty array C' (otherwise the string we are trying
to decode was not properly encoded), and our output array will contain HD(T).

4 Parallel Algorithms in Theory

Just as in the last section, we will separately describe the parallel algorithm for
each step that I implemented.

4.1 MTF Encoding

To parallelize the MTF encoding algorithm, we cleverly interpret it as a parallel
prefix over an appropriate binary operator. First, let L(¢) be the array L after
processing character S; of the input string. Then, our first goal is to compute
L(4) for all ¢, which we can do as a parallel prefix. Define the binary associative
operation C, which works as follows. Given two character arrays, z and y, C
returns a character array containing the elements of y followed by all characters
in 2 which do not also occur in y. As it turns out, we can calculate L(4) by
prepending the alphabet in order to S, thinking about each character S; in S
as the array [S;], and then computing a parallel prefix using operation C over
S [1]. For details and proof, see the original paper. Now, once we have L(i) for
all 7, we can produce the output at any position ¢ by simply finding the integer
j such that L(I); = 5; , and writing that integer to our output array. This is a
purely local operation and thus directly parallelizable.

4.2 MTF Decoding

The parallelization of the MTF decoding algorithm is similar, but uses a different
binary associative operator. We begin with an array T' € S(II) of integers, and
want to produce the decoding string S € S(X) of characters. Our first goal is
again to compute L(7) for all . In this case, we realize that, in our decoding
algrithm, we permute L the same way every time that we see the same integer
x = T;. Namely, we always move L, to the front of L. As such, we can calculate
L(i) for all i as a parallel prefix over the permutations defined by each integer
in T', with permutation composition as the binary associative operator. Then,
given L(i) for all ¢, we can produce the decoding by simply writing out L(i)r,
for all 4, which we can directly parallelize.

4.3 Huffman encoding

The parallel Huffman encoding algorithm is fairly straightforward, but there
is some added complexity due to the fact that the encoding is not one-to-one.
That is, the characters of HE(S) do not correspond bijectively to the characters
of S, so, when writing our encoding, we need to do some extra calculations to
determine to where each coded character should be written. First, to build
our coding tree, we need the counts of all characters in the array. This we
calculate directly with a parallel prefix computation. We then build up the
optimal encoding tree on the master processor, since this computation is on the
order of the size of the alphabet, rather than the size of the input string. Now
comes the extra step. Given the length of each code from the coding tree, and
the cumulative counts at each point, we can compute the position P; to which
the encoding of S; should be written in the output string, using another parallel
prefix. Finally, given P; for all ¢, we can write the encodings of each character
in parallel to the output array.

4.4 Huffman decoding

The Huffman decoding algorithm is the most involved of the four algorithms.
Here the problem is that only certain positions in the input bit string are valid
start positions for decoding. Thus, our first goal is to identify a set of such valid
starting positions. Let M be the maximal length of a bit encoding of any integer
in II. Then, we first segment the array into bins of length M. In parallel, we
calculate a pointer starting at every position p in the input array, which points
to a bit in the next bin after that point. To calculate this pointer, we start
decoding at p, and the first time we land in the next bin, we record a pointer to
the position at which we landed. A further discussion of this computation can be
found in [I], but the intuition is that each pointer tells us that, if its start point
is a valid decoding start position, so is its end point. Clearly, these pointers can
all be calculated in parallel. Armed with these pointers, we can run a parallel
prefix computation over the bins, with the operation that combines every pair
of pointers (a — b),(b — ¢), into one longer pointer (¢ — ¢). This gives us

pointers from every point in the first bin to points in every other bin. If we take
the pointers from the first point of the first bin, they point to one valid decoding
start position in every bin. Given these start positions, it is possible to decode S
in parallel. We first calculate in parallel how many decoding characters separate
each of the start points that we have calculated, and use a parallel prefix over
these numbers to determine to where each bin maps in the output array. Given
this, we can decode each bin directly in parallel.

5 General Implementation Details

5.1 General differences between parallel algorithms in the-
ory and practice

In translating the parallel algorithms described above into code, there was one
common pattern that arose. In almost every case, the parallel prefix interpre-
tation of the algorithm is outperformed by the serial algorithm. For example,
interpretting MTF decoding as a composition of permutations is less efficient
than simply scanning over the array and moving each character successively to
the front of L. Thus, rather than running a full parallel prefix over the input,
where the distinction between parallel and local operations could be masked
from the programmer, the most efficient way to implement the algorithms was
to write a serial version to be run on each local process, and then use the par-
allel prefix operation only to combine the results of the local computations into
seeds for the decoding. For example, the composition of permutations idea is
necessary to determine the starting state of L for each local process given the
output of the serial MTF decoding algorithm on each local portion of the array.
However, the local MTF decoding algorithm is faster written in its standard
form than in terms of permutations.

5.2 Infrastructure for Parallelism

To implement these algorithms, I used Julia’s SharedArray framework. The
code written for these algorithms can run on any number of processors, us-
ing only a very small number of functions meant to parallelize operations over
a SharedArray. With p processors, we always divide a SharedArray S into p
equally sized blocks over which we can parallelize operations. Of course, every
processor has access to the whole array, so this partitioning constraint is en-
tirely self-imposed. However, it does mean that the algorithms could easily be
transformed to work on DArrays.

The primary operations I implemented for parallelization are fanin and
fanout. fanin takes in a function f and a SharedArray S, runs f on every
local portion of S, and returns the results of the computation as an array of
length p. fanout takes in an array seed of length p, a function f, a Shared Array
S, and a SharedArray T. seed is used to distribute information calculated in
a fanin, and possibly processed locally, back to the local processes. f then

takes a single element of the seed, and the arrays S and T', and runs locally on
each processor. I used two arrays so that I could encode the array S into the
array T without overwriting S, and so that it would work even if the output
needs to be a different type of array than the input. It is nice to note that
the star topology described by Eka is exactly a fanin operation, followed by
a local computation, followed by a fanout. While I initially implemented the
star operation directly, I later found it more intuitive for me to split up the
components into three stages, rather than write them in one command, leading
to the fanin and fanout structure I described.

Throughout this project, I saw the utility of such a framework for hiding the
parallelism used when writing up each of the four algorithms I implemented. The
star, or fanin/ fanout structure, is just the right level of abstraction, where the
programmer is separated from low level parallelizatoin calls, but still has the
power to write code that will perform well. For example, a simple parallel prefix
structure which used the same algorithm to combine results locally and globally
would be even easier to work with, but would not allow the user to distinguish
between using algorithms optimized in serial on each local process, and only
using the parallel prefix framework to combine the results globally.

As far as the specific choice of which functions to use as a baseline, I think if
I were to start from here, I would implement one basic function, called fan. fan
would fundamentally represent one computation performed on each processor
on its local portion of the array. It would optionally take an array of seeds, and
if seeds were provided, then the function given for the distributed computation
would be passed the appropriate element of the seed array. After performing
the computation, each processor would optionally fan back in a result from its
computation, or return nothing if all that was desired was a mutation. Using
this framework, fanin and fanout would simply be special cases of fan, and
the star operation would be two fan operations. The advantage would be that
simpler computations, like a simple cum sum, or a command to sort each portion
of the array, could also be naturally written as a single fan operation without
unnecessarily using two parallel calls. Of course, there are surely benefits and
drawbacks to each way of doing this, but for me, for this project, putting the
three steps of the computation into a single star operation was less intuitive
than splitting it up into several function calls.

One final interesting implementation detail with respect to using parallel
structures that take in functions is that I found I had to be careful about how
I created the functions. There were some cases in which each function needed
a seed that would be calculated at run time, but the seed was the same across
all the portions of the array. For example, in Huffman decoding, each local
processor needs the decoding array, but I originally preferred not to put that in
the seed of each function, because it was the same for every process. Thus it
was appealing to imagine that I could build the function on the local process,
by calling a function builder which took the decoding array, and then pass
the resulting function to each processor to be run. In hindsight, this doesn’t
make any sense, because the decoding array will inevitably need to reach each
processor, so it might as well be sent to each one as part of the seed. However, it

took me a while in debugging to realize that that was significantly slowing down
my code (roughly by a factor of 10). While I still don’t know what exactly Julia
does in this case, or whether this is really an issue of parallelization, or just an
issue of trying to encode too much information in a function, it was interesting
to see how much of a performance effect that had and how easily I made such
a costly mistake.

6 Particular Implementation Details

6.1 MTF encoding and decoding

MTTF decoding and encoding worked just about exactly as described above. The
parallel prefix operations are implemented by using the serial algorithms within
each local portion of the array, and using the parallel prefix framework only to
combine these results on the master node into seeds for the next step of the
computation.

6.2 Huffman encoding

Relative to the algorithm described above, and the previously made implemen-
tation comments, there is only one further modification I made to the Huffman
encoding algorithm. That modification is that, instead of using one parallel
prefix operation to count the characters, and then another one to calculate
starting points for each local process, we can in fact avoid making the second
computation altogether. This is because the first parallel prefix gives us the
counts of each character up to the starting point of each array. On the mas-
ter process, we can then use the determined codes to calculate how many bits
each local portion’s encoding should take, giving us the starting points of each
process without another parallel operation. This takes out the only extra step
performed by the parallel algorithm over the serial algorithm, giving us near
perfect parallel speedups.

6.3 Huffman decoding

The Huffman decoding algorithm is, again, a little more involved, and the most
interesting part of my project. Recall that the parallel algorithm described
above first bins the input into bins of length M, where M is the maximum
code length. It then calculates pointers from each bin into the next bin showing
where a decoder would end up in the next bin if it started decoding at each
point in one bin. To modify this procedure for an array divided into p blocks,
the most natural method is to have each processor locally decode, starting at
each of the first M positions in its portion of the array, and create a pointer
from each of those M start points into the next processor’s portion of the array.
We can then combine these pointers with a parallel prefix computation on the
master process, calculating one valid decoding start position at the beginning
of every local portion of the array. We can simultaneously fan in the number

of characters used for each pointer calculated, allowing us to also calculate
positions in the output array coresponding to each valid start point. Finally,
we can fanout the startpoints and the local decoding computations.

The problem with this, and the algorithm described in the paper, is that
they both require roughly M times as much total work as the serial decoding
algorithm, since they require decoding every position in the array up to M sepa-
rate times. In the original paper, this was overcame by parallelizing over many,
many processors. In my project, I had access to a machine with 6 processors,
so the factor of M more than overwhelmed the speedup I could hope to obtain
from parallelization. Luckily, there is an algorithmic solution.

The solution relies on an insight about Huffman decoding from different
points in the input string. The insight is that, if we decode an input string from
M consecutive start locations, it is almost impossibly unlikely that the decoding
paths found by the M start points stay distinct. That is, the paths almost
certainly converge very quickly into a single path. This is for the simple reason
that, every time two separate paths starting near each other decode a character,
there is some chance that they converge. On the other hand, once they converge,
they can never separate. In practice, this means that the total amount of
computation we need to do should have some component based on the size of
the alphabet, representing the computation from the beginning of the bin until
the convergence point of the M paths, and then another, additive component
that is proportional to the sequence length, representing the decoding of the
single converged path from where it converges until the start of the next bin.
This is much better than before, when the factor of M was multiplied into the
computation on the length.

To implement this effectively in practice, I divided each processor’s local
portion of the array into medium-sized chunks. By medium-sized, I mean that
I wanted the chunks to be big enough that the computation of decoding over
a chunk would be much larger than the bookkeeping needed to check for the
convergence of paths at the end of the chunk. On the other hand, I wanted them
to be small enough that I could afford to process the whole first chunk naively
before checking for redundant paths. Given such properly sized chunks, the
algorithm starts off with all the start points in the first chunk, and decodes each
of them until it reaches the second chunk. At the beginning of each chunk, it then
checks for paths that converged, and only continues decoding once from each
distinct start point reached. This results in an extremely efficient computation
which has no significant speed loss over simply decoding a single path of the
same length as the local portion. In every case I saw, all paths converged within
the first chunk of the local portions, which were designed to be at least 10000
bits each, and if possible, at most 100 times smaller than the local portion of
the array. Importantly, while my algorithm takes advantage of convergence, it
doesn’t assume convergence; thus, a pathological input could cause it to run
slowly, but could not cause it to return an incorrect result. Overall, using this
modified algorithm, I was able to achieve significant parallel speedups, even with
only 6 cores at my disposal. In particular, using the parallel algorithm on one
processor resulting in a factor of 2 increase in runtime, which was then translated

Speedup vs. Number of Processors

Speedup over serial

Number of processors

Figure 1: Runtime speedup of entire encoding and decoding process on between
one and six processors

into a 3 times speedup for running the parallel algorithm on 6 processors.

7 Results

The results of my implementation of these algorithms were very encouraging.
Once the kinks of the parallelization were worked out, I obtained significant
speedups on every part of the algorithm, as shown in Figures[[]and 2] Overall,
the full process takes about twice as long to run in its parallel form as in its
serial form on a single processor. Thereafter, as the number of processors used
increases, at least up to 6 (and on a single machine), the speedup scales nearly
linearly with each processor added, resulting in a speedup of almost 3x for 6
processors.

8 Conclusions

Overall, I learned a lot about designing and implementing parallel algorithms
throughout the course of this project. Julia provided a relatively convenient
base on which to build parallel functionality, although it was very confusing at
first to figure out how to handle modules on multiple processors. As an overall
implementation strategy, I first played around with implementing various very
simple parallel operations (doubling the entries of an array, or setting them,
or calculating a cumulative sum) in order to ensure that the parallelization
structure I was using was effective and could obtain speedups on the architecture
I had. Thereafter, once that was tested, I never had to worry about it again,

Run times in seconds for serial and parallel algorithms

Processors | Serial P1 2 3 4 5 6
Total 48 61.1 327 242 19.0 171 14.1
IMTF Encode | 5.6 6.5 3T 30 25 24 20
Huffman 254 287 14.8 10.3 a1 71 58
Encode

Huffman 2.3 53 24 17 1.3 10 T
Decode

MTF Decode | 5.5 75 38 25 1.9 i A 1.4

Figure 2: Times in seconds for each portion of the algorithm as a function of
the number of processors.

which made the whole process much easier from a debugging and engineering

standpoint.

Finally, in terms of the algorithms I implemented, the conclusions are very
positive: Huffman encoding and MTF encoding can both be effectively paral-
lelized on standard machines in Julia. An interesting further project would be
to design a full BWT in parallel, and see if it is still possible to get such effective
speedups. It would also be interesting to implement my algorithms for DArrays
and then try running them on more processors and over machine clusters to see
if the parallel speedups continue to be linear.

10

References

[1] Edwards, J. A., and Vishkin, U. (2014). Parallel algorithms for Bur-
rows—Wheeler compression and decompression. Theoretical Computer Sci-
ence, 525, 10-22. Chicago

[2] Edwards, James A., and Uzi Vishkin. "Empirical speedup study of truly
parallel data compression.” (2013).

11

	Introduction
	Background
	Specific Aims

	Definitions
	Serial Algorithms
	MTF Encoding
	MTF Decoding
	Huffman encoding
	Huffman decoding

	Parallel Algorithms in Theory
	MTF Encoding
	MTF Decoding
	Huffman encoding
	Huffman decoding

	General Implementation Details
	General differences between parallel algorithms in theory and practice
	Infrastructure for Parallelism

	Particular Implementation Details
	MTF encoding and decoding
	Huffman encoding
	Huffman decoding

	Results
	Conclusions

