
Bringing Software Transactional Memory to Julia
18.337

David Girardo

daig@mit.edu

Motivation

¤  Parallel programming is held back programming complexity

¤  MIMD ergonomics lag behind SIMD

¤  Manual locking still the go-to solution
¤  Not maintainable / Reusable

¤  Painful!

Software Transactional Memory

¤  Idea: Replace Locks with Atomic Blocks
¤  To the shared environment: Every operation in a block occurs, or none do
¤  To the local environment: ???

¤  TVar / Managed References
¤  A memory cell that can enforce atomic transactions
¤  “They’re like regular references, except not broken” – Rich Hickey

abstract Tvar{T}
function readTVar{T}()::T
function writeTVar{T}(v::T)

STM implementations

¤  Common idea:
¤  Attach version number to TVar

¤  If another process touched the variable before commit, abort

¤  Many choices for scheduling, logging, and heuristics,
¤  Each with a tradeoff

¤  Most implementations are monolithic

Stanford Transactional Applications for Multi-Processing (STAMP) benchmark
http://csl.stanford.edu/~christos/publications/2008.stamp.iiswc.pdf

Stanford Transactional Applications for Multi-Processing (STAMP) benchmark
http://csl.stanford.edu/~christos/publications/2008.stamp.iiswc.pdf

No “Best” implementation

Goal

¤  Framework for STM syntax

¤  Explore Julia’s unique design space
¤  Efficient Types

¤  Macros

¤  Leverage existing parallelism ecosystem

Transactional Variables

¤  Pros:
¤  Simple

¤  Transparent

¤  Cons:
¤  Complicates algorithm

¤  Solution: Macros

type TVar{T}
 v::T
 version::Int
 varID::Int

end
AtomicBlock = Dict{Int,Int}
function beginAtomic()::AtomicBlock
function commitAtomic(d::AtomicBlock)

Sweet Macro Sugar

¤  @dosync <your code>
¤  Convert all assignments to .writeTVar, reads to .readTVar

¤  Pros:
¤  Trivial code modifications

¤  Cons:
¤  Many options to pick (boundaries, backends), hard to “do the right thing”

¤  Fixes:
¤  ‘@atomicVar x = 3’: Define Tvar, mark which names to convert in @dosync
¤  Backend agnostic intermediate

Task STM

¤  Tasks
¤  AKA “Green Threads”

¤  AKA Coroutines

¤  Pros
¤  Light, Fast

¤  True Shared Memory

¤  Cons:
¤  Concurrent but not Parallel

Shared Array STM

¤  Shared Arrays
¤  A thin wrapper around Julia’s Shared Arrays, array “chunks” tracked by TVars
¤  Discrete chunks (track every index, lots of overhead)
¤  Indiscrete chunks (track whole array, misses parallelism)

¤  Pros:
¤  Easy to work with
¤  Efficient Sharing
¤  Scalable

¤  Cons:
¤  Only works for arrays

(for now)
¤  Determining data dependence (“chunking”) is hard

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

??

Optimizing with Persistent Data Structures

¤  Preserve old versions of data

¤  Minimize data duplication

¤  Challenges
¤  Normally either baked into language,

or manual and tedious

¤  Works for boxed data

¤  Unboxed Speed
possible with clever records

“STM as a library”

¤  STM usually requires a single, fixed implementation language support
¤  Haskell, Clojure:

¤  persistent data-structures
¤  values boxed by default
¤  GC already tuned

¤  C++, Java family use special-purpose compiler

¤  While Julia has:
¤  Types that are no different from primitives
¤  Fully Expressive macros
¤  We should have the freedom to choose a backend!

Future Work

¤  In-the-pipeline
¤  Distributed backend
¤  Backend-Agnostic intermediate, ClusterManager style
¤  Backend benchmarking

¤  Julia Community:
¤  Reduce overhead with “Chunked” shared arrays
¤  Proper interfaces / function types would be really nice

¤  Research-Grade:
¤  Backend Heuristics

¤  Julia-level static program/architecture analysis (FFTW, PetaBricks)
¤  JIT in LLVM

¤  Transform programs to use Persistent Data Structures

Resources \\ Questions

¤  http://www.infoq.com/presentations/Value-Identity-State-Rich-Hickey

¤  http://blog.enfranchisedmind.com/2009/01/the-problem-with-stm-your-
languages-still-suck/

¤  http://chimera.labs.oreilly.com/books/1230000000929/ch10.html

