Bringing Software Transactional Memory to
Julia

David Orion Girardo

Massachussets Institute of Technology, Cambridge, MA

Abstract

While robust abstractions exist for parallel SIMD algorithms, writing
concurrent programs is notoriously difficult, and teasing MIMD perfor-
mance from these programs even more so. As a result, many obviously
parallel problems are left unoptomized due to the programming complex-
ity. In particular, managing mutex locks and race conditions is not only
complex, but unscalable, in the sense that two working lock-based im-
plementations cannot be composed in a safe way. Software transactional
memory (STM) is an alternative abstraction for speculative concurrency
and parallelism that resolves these scalability issues. However, STM has
historically proved tricky to implement performantly in common scientific
languages. Julia’s unique combination of expressive macros and efficient
user types provides a promising foundation for effective STM. This paper
explores the design space for STM in Julia, and proposes an implementa-
tion.

Contents

[1__Introductionl

|2

Background|

13 Technical Approach|

8.2 Task Implementation|. o000

3.3 Shared Array Implementation| 0.,

4 Comparisons|

[6__Analysis and Future Work]|

6.1 educe overhead wit unked” shared arrays|

6.2 Qdistributed and @shared transforms for data-types|

Tk W W

(xR

1 Introduction

From the programmer’s perspective, code is organized into atomic transaction
blocks, such that the system is never left in an unfinished transaction state.
Concurrency /parallelism is achieved by scheduling threads eagerly (but not nec-
essarily greedily - the scheduler is left unspecified to allow optimizations), rather
than waiting for locks to release. Instead of locks, if a concurrent process be-
comes invalid because of a change in global state, it will retry with the new
values. This kind of speculative parallelism means processes never need to wait
for input, so in practice often outperforms hand-made lock-based implementa-
tions. Most importantly, it is composable: any thread-safe STM algorithm will
still be thread-safe when combined with another STM algorithm. This is not
true of other lock-based implementations, and allows great scalability from the
programmer’s perspective, allowing algorithms that would be too hard to par-
allelize to at least gain a modest speedup with very little effort. Programmers
also need not think about complicated locking dependencies, and the system
will never deadlock (however, some care must be taken by the scheduler to
avoid live-lock, where a long-running task is repeatedly trumped by many short
running tasks). In practice, concurrent programs structured around Software
Transactional Memory reduce bugs and reduce development time compared with
lock-based implementations, but tuning performance can be tricky [12]

2 Background

STM was once very popular in the C/C++ community, drawing research from
industry heavyweights such as Intel Corperation [13]| [11] and Sun Microsys-
tems |7]. Interest in production has declined due to the general difficulty of
implementing and scheduling STM in a strongly stateful environment without
garbage collection, as C family encourages |[4]. Many of these projects (such
as the Intel Transactional C++ Compiler) were largely abandoned by commer-
cial enterprises, and relegated to the fringes of academia, though more recent
developments have seen a unified push for transactional support in C++ [1].
Since however, it has become widely popular in the functional programming
communities, such as the Haskell |5] and Clojure |15] ecosystems, as pragmatic
tools for concurrency management because of the amiability to garbage collec-
tion, fast green threads |14], and a stateless style. |9] Because of Julia’s garbage
collection facilities and expressive internal expression transforms [2|, it provides
a powerful foundation for STM, rivaling that of functional-first languages.

3 Technical Approach

3.1 User Interface

Transactional abstractions are exposed to the programmer via the @stmatomic
and @stmvar macros. Users wrap atomic expressions in the @stmatomic macro,

and it is converted to a form where Transactional guarentees (that the shared
state is only modified if the entire transaction succeeds) are enforced. Ex-
pressions within the @stmatomic block may refer to global variables as if they
were the only user, provided that the variables were forward declared with an
@stmvar declaration. Variables reads and assignments for such variables within
the @stmatomic block are automatically converted into the implementation-
depended readstm and writestm expressions. An example Julia Software Trans-
action looks as follows:

Currently there are two main implementations, which expose a different
@stmatomic macro, utilizing the Task or Shared Array backend respectively.
Future work remains to unify these implementations into a single transactional
type, which dispatches on an implementation parameter.

3.2 Task Implementation

The basic reference implementation utilizes Julia’s Task library coming with the
standard Julia distribution. Julia Tasks provide lightweight concurrency facili-
ties via “green threads”, based on context switching of coroutines. As such, they
do not provide true parallelism natively, but are still useful for enforcing trans-
actional concurrency without excessive overhead. They also prove the simplest
to implement, since much of the capability is built into the Task infrastructure
already.

There are three main features necessary to build Software Transactional
Memory on Julia’s Tasks: Variable versioning, variable commits, and retries.

Versioning is implemented in two parts. The global version is provided by
a TVar wrapper type encapsulating a shared resource together with its public
version number.

type TVar{T}

vi:T
version::Int
varID::Int

end

@stmvar declarations like
@stmvar x::Int = 3

are converted into initialization of a TVar object
TVar(3,0,hash("x")

as well as adding the (hash of the) var’s name to the global list of names
to be converted inside an @stmatomic block. Locally, each @stmatomic block
creates its own STMTable, which is just a hashmap from global variable names
to version numbers. ReadT Var then, in addition to returning the value from
the TVar, implicitly reads the global version number into the local version ta-
ble. WriteTVar resynchronizes the atomic thread by locking the TVar and
comparing its global version number to the local version number. If the global

B. C.

sy T2 03 T4 [5Y[1 [2 |3 [4)]5]
)6 |7 |8 [9 [10]]6 |7 |8 [9]]1
15)|{ 11|12 (13 (14 15|11 [12]13 |14 [T15
20]||16 [17 |18 |19 |20 || 16|17 |18 |19 |20
25|21 |22 |23 |24 |25/ |21 |22 |23 |24 |25

YFeEEE

8888
2E888
BEEee -

22)

Figure 1: Example chunkings of a 5 x 5 SharedArray,
with (A.) discrete chunking, (B.) indiscrete chunking, and (C.) hybrid chunking

version number is higher than the local, this means that another transaction
has executed before this one has finished. To be conservative, we assume that
such cases invalidate the transaction, so the new TVar is read in via ReadT Var
and the computation is restarted. If the version numbers are equal, the local
value is written and the global version is incremented, releasing the lock. It
should be noted that even though we use an explicit lock here, because of the
restricted nature of our usage (only updating the TVar version and value with
no extra computation), there is no chance of deadlock, since the computation
holding the lock always has all resources available to complete the computation
(the new T'Var value and version number), and never needs to wait on another
computation.

3.3 Shared Array Implementation

The Shared Array implementation is built on top of Julia’s Shared Array fa-
cilities, and the Task implementation detailed above. The key value here is
that Shared Array allow true shared-memory parallelism, rather than simply
coroutine-based concurrency abstractions. Since all the values in a Shared Ar-
ray are logically independent, there are multiple choices for transactional bound-
aries, depending on which parts of the array should be considerd distinct trans-
actions. Different choices for transaction boundaries can be seen in Figure [T}
Each choice groups some indicies together, so that they are tracked using the
same versioning. Thas has obvious performance implications, as recording more
versions has overhead, but finer grained transaction boundaries prevent unec-
essary transaction abortion, when a computation only touches a small number
of indices (for example, updating a single user in a massive medical database).
The choice of the optimal boundary choice, given some partially known access
pattern is known as the “Chunking Problem”.

The simplest case can be called the “indiscrete” chunking, where all indices
are versioned together. This is logically equivalent to putting the entire array
inside a TVar. The other extreme is “discrete” chunking, where each index gets

its own version. To accommodate both styles, the TVar type is modified to
include an index table (a partitioning on the index set). This choice has the
benefit of automatically generalizing to more complex irregular chunkings like
Figure [T C, as well as removing memory overhead by allocating only one global
TVar record, rather than one for each chunk. Otherwise, the version tracking
mirrors that of the Transaction implementation, with ReadT Var reading in ver-
sions for a specified index range, and WriteT Var checking that the version for
those indices was not changed before committing. The user should be mindful
to read as many indices in at once as possible, to minimize the number of calls to
ReadTVar. The beauty of the Shared Array implementation is that parallelism
is handled implicitly by the indexing mechanics dispatched by the Shared Array
type, so that it can be otherwise utilized the same as a standard array.

Currently, the choice of chunking is built into the @stmvar macro, rather
than being exposed to the user. This is just a simplifying choice made for the
reference implementation, and could be just as easily replaced by a macro with
more parameters to decide chunking. Ideally, static analysis would decide a
good trade-off without extra parameters, hiding the complexity from the user -
optimal chunking remains a research problem.

4 Comparisons

Benchmarks were utilized from the STAMP [10] (bayes and k-means) and RMS-
TM [8] (ScalParC) benchmark suites, comparing both Julia implementations
against niave non-parallel algorithms, and Intel’s C++ compiler.

Some of the most interesting benchmarks (for example, a fully functional
Quake server) were highly nontrivial to implement. As such, due to time con-
straints, we only consider this subset of benchmarks, but feel that they cover
the range of transaction profiles well enough to provide a good comparison.

Note that benchmarking was performed on an AMD FX-8320E, which, while
presenting 8 logical cores to the Operating System, actually has 8 integer pro-
cessing units but only 4 floating point processing units. While interesting to
consider the behavior of the floating point benchmark past 4 cores, this is a
reflection of the quirks of the FX family’s threading capabilities, not of the Ju-
lia Software Transactional Memory implementation. Unlike the other two, the
ScalParC benchmark as in Figure [f] can be seen to scale past 4 cores, indicating
that its bottleneck is on integer performance.

4.1 Discussion

It is worth noting that a message passing implementation is possible, where stan-
dard threads are used rather than Julia’s Tasks. However, we do not attempt it
here, because the necessary copy semantics would negate the performance ben-
efit of shared memory, and so would be more clearly and efficiently written as
an explicit message passing algorithm, through MPI for example. If persistent
data structures are substantiated in Julia, it may be worth revisiting a message

25

(=]

L

Ln

[

0

in

0

3.5

7]

25

(=]

15

[

0.5
0

K-Means

1 2 3 4 = B r 2

mintel {++ wC++Locks mlulizlock mlulizTasks wmlulizSaray

Figure 2: Speedup/Cores chart for K-Means benchmark

Bayes

il ||‘|| ||||| ‘“Il |“I| |“|I |“|| |“||
1 2 3 4 5 B r 8

mintel {++ wC++Locks mlulizlock mlulizTasks wmlulizSaray

Figure 3: Speedup/Cores chart for Bayes benchmark

ScalParC

1 2 3 4 5 & 7 8

mintel {++ w0+ Locks mlulizlock JulizTasks wmlulizSarray

Ln

=

L

(=]

=

Figure 4: Speedup/Cores chart for ScalParC benchmark

passing model that only sends lazy transaction descriptions, rather than copying
the entire data.

It is clear that there remains work to be done for The consistency of Julia’s
lock based implementations with the C++ version is remarkable, but is slightly
overshadowed by the constant factors not depicted in a a dimensionless speedup
chart. The dramatic performance difference between the lock-based and Trans-
action based algorithms is that the lock-based algorithm is hand-rolled so as not
to introduce additional overhead for greater thread numbers. The low perfor-
mance of Task implementation is expected, since it is not parallel at all, though
there is certainly room to reduce the overhead for greater threads (potentially
by ignoring them completely). We suspect that much of the bottleneck for
Shared Array Transactions is in the Shared Array framework itself, as Julia is
known for having patchy support for true shared memory - preferring an explicit
distributed model instead.

5 Conclusion

This work sets the foundation for Software Transactional Memory in Julia. How-
ever, mature Software Transactional Memory implementations, such as the ef-
forts of the Intel C++ compiler are highly tuned, and commonly long community
efforts.

Julia was not benchmarked against the Haskell or Clojure Software Trans-
actional Memory implementations, even though they are the industry standard
for practical usage, because the comparison would not be sensible. The key fea-

ture of those two systems is to keep all data in Persistent Data-structures [6],
allowing for relatively fast data updates while preserving all previous versions in
case of transaction rollback. This is possible for pointer-linked data-structures
by only copying and updating the critical path to a modified leaf value, causing
the rest of the structure to point back to the unmodified original. Mirroring
this approach for Julia to allow a fair benchmark would require a total rewrite
of the algorithm, and would do more to compare the languages’ capacity for
persistent data-structures, since functional languages have a Garbage Collector
highly tuned for such purposes. While the algorithm conversion may be auto-
mated (see Future work on @shared macros), native performance will not be
matched without heavy modifications to the Julia Garbage Collector.

Because of the top-level macro-based approach taken here, the Julia imple-
mentations do not currently support nested transactions, where an arbitrary
transaction may occur (possibly dynamically) while executing another transac-
tion, as the second transaction will not be properly converted by the macro.
This is a limitation of the existing front-end, not a fundamental limitation to
the implementation. The solution would be, rather than relying only on Julia’s
macro facility, to fully internalize the Software Transactional Memory specifica-
tion as a data-type in the Task hierarchy, and utilize Julia’s multiple dispatch
facilities for automatic conversion to Transactions, similarly to the “Monad”
implementation favored by Haskell. This would provide a bind/join semantics,
allowing a transaction returning a transaction to be “flattened” into a single
transaction. [9]

6 Analysis and Future Work

In this section are laid out a number of future directions to expanding this work
into a robust Software Transactional Memory ecosystem for Julia, rivaling those
mature implementations.

6.1 Reduce overhead with “Chunked” shared arrays

Currently, there are many choices for how to enforce transaction boundaries
(one for every partition of an n X m matrix) in the shared array implementa-
tion. While all are correct, each has a performance impact: memory overhead
is linearly proportional to the number of chunks, but retry rates from block
collisions threaten a potentially super-linear slowdown, and even live-locks, for
poorly chosen transaction boundaries. The safest choice then for programmers
utilizing this implementation is to use the indiscreet chunking, allowing for
minimal overhead, and manual chunking by splitting the matrix if necessary.
However, the optimal choice of chunking is completely determined by memory
access patterns within the matrix, so if these details are known statically at
compile time (even approximately known), one might expect an automatic op-
timization choice made programmatically. These sorts of optimizations, those
which make critical performance choices for the programmer, are rightfully re-

garded with caution when peak performance is necessary. In this case, skeptics
need not worry, for the choice is no choice at all: for a given memory access
pattern, there is a uniquely optimal chunking choice. Often, this access pat-
tern is statically known, implicit in the structure of the program. However, if
the access pattern is dictated by external data received by the program during
execution, no such analysis is possible. In this case, the human programmer
has the advantage of more intimate knowledge of the kind of input that will
be received. Again, this is not a fundamental limitation, as programmers must
learn the input pattern from experience, so to may an optimization engine learn
to pick the right parameters through automated benchmarking.

6.2 @distributed and @shared transforms for data-types

While shared and distributed arrays are powerful tools, they work best on
regularly arranged data, and do not support, for example, nested data par-
allelism [3]. This becomes particularly important for Software Transactional
Memory, where optimal performance comes from depth-first partitioning along
transaction boundaries, rather than the traditional breadth-first partitioning of
data-parallel applications. Fortunately, there is nothing particular about Julia’s
shared and distributed arrays that hinges on the array structure - the shape sim-
ply happens to be baked into the implementation. The major hindrance then,
is that implementing new shared or distributed versions for each data-type is
time consuming, and pollutes the library environment. Shared and distributed
arrays are chosen because they are the most general purpose data-structure,
a good value-to-effort payoff. Fortunately, the machinery behind shared and
distributed arrays is a direct transform of the original structure, and so can be
generalized into a dedicated @shared and @distributed macro infrastructure.
Usage takes the form

@distributed type SharedActionTable
RowID: :Array{Int,1}
User::Array{User, 1}

TimeStamp: :Array{DateTime, 1}
Action::Array{String, 1}
end

Creating a distributed datastructure with heterogeneous fields. The Clus-
terManager used at runtime then controls how to effectively distribute the
data.

10

References

(1]

2]

131

4]

[5]

16]

7]

18]

19]

[10]

Hans Boehm Calin Cascaval Steve Clamage Robert Geva Justin Gottschlich
Richard Henderson Victor Luchangco Virendra Marathe Maged Michael
Mark Moir Ravi Narayanaswamy Clark Nelson Yang Ni Daniel Nussbaum
Torvald Riegel Tatiana Shpeisman Raul Silvera Xinmin Tian Douglas Walls
Adam Welc Michael Wong Peng Wu Ali-Reza Adl-Tabatabai, Kit Barton.
Draft specification of transactional language constructs for c+-+. Technical
report.

Jeff Bezanson, Alan Edelman, Stefan Karpinski, and Viral B. Shah. Julia:
A fresh approach to numerical computing. CoRR, abs/1411.1607, 2014.

Guy E. Blelloch. Vector Models for Data-parallel Computing. MIT Press,
Cambridge, MA, USA, 1990.

Calin Cascaval, Colin Blundell, Maged Michael, Harold W. Cain, Peng
Wu, Stefanie Chiras, and Siddhartha Chatterjee. Software transactional
memory: Why is it only a research toy? Commun. ACM, 51(11):40—46,
November 2008.

Anthony Discolo, Tim Harris, Simon Marlow, Simon Peyton Jones, and
Satnam Singh. Lock free data structures using stms in Haskell. In FLOPS
2006: FEighth International Symposium on Functional and Logic Program-
ming, April 2006.

James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan.
Making data structures persistent. J. Comput. Syst. Sci., 38(1):86—124,
February 1989.

Maurice Herlihy, Victor Luchangco, Mark Moir, and William N. Scherer,
III. Software transactional memory for dynamic-sized data structures. In
Proceedings of the Twenty-second Annual Symposium on Principles of Dis-
tributed Computing, PODC ’03, pages 92-101, New York, NY, USA, 2003.
ACM.

Gokcen Kestor, Vasileios Karakostas, Osman S. Unsal, Adrian Cristal,
Ibrahim Hur, and Mateo Valero. Rms-tm: a comprehensive benchmark
suite for transactional memory systems. SIGSOFT Softw. Eng. Notes,
36(5):335-346, September 2011.

Simon Marlow. Parallel and concurrent programming in Haskell. In
V. Zsok, Z. Horvath, and R. Plasmeijer, editors, CEFP 2011, volume 7241
of LNCS, pages 339-401. 2012.

ChAy Cao Minh, Jaewoong Chung, Christos Kozyrakis, and Kunle Oluko-
tun. Stamp: Stanford transactional applications for multi-processing.

11

[11]

[12]

[13]

[14]

[15]

Yang Ni, Adam Welc, Ali-Reza Adl-Tabatabai, Moshe Bach, Sion Berkow-
its, James Cownie, Robert Geva, Sergey Kozhukow, Ravi Narayanaswamy,
Jeffrey Olivier, Serguei Preis, Bratin Saha, Ady Tal, and Xinmin Tian. De-
sign and implementation of transactional constructs for ¢/c++. SIGPLAN
Not., 43(10):195-212, October 2008.

Victor Pankratius and Ali-Reza Adl-Tabatabai. Software engineering
with transactional memory versus locks in practice. Theor. Comp. Sys.,
55(3):555-590, October 2014.

Bratin Saha, Ali-Reza Adl-Tabatabai, Richard L. Hudson, Chi Cao Minh,
and Benjamin Hertzberg. Mecrt-stm: A high performance software trans-
actional memory system for a multi-core runtime. In Proceedings of the
Eleventh ACM SIGPLAN Symposium on Principles and Practice of Paral-
lel Programming, PPoPP ’06, pages 187-197, New York, NY, USA, 2006.
ACM.

Andreas Richard Voellmy, Junchang Wang, Paul Hudak, and Kazuhiko
Yamamoto. Mio: A high-performance multicore io manager for ghe. SIG-
PLAN Not., 48(12):129-140, September 2013.

R. Mark Volkmann. Software transactional memory. 2009.

12

	Introduction
	Background
	Technical Approach
	User Interface
	Task Implementation
	Shared Array Implementation

	Comparisons
	Discussion

	Conclusion
	Analysis and Future Work
	Reduce overhead with ``Chunked'' shared arrays
	@distributed and @shared transforms for data-types

