18.337 Report - Parallel Spectral Elements for
Nuclear Applications

Colin Josey
12 December 2015

1 Introduction

One method rarely used in analysis of a nuclear reactor is the spectral element
method. The spectral element method is a method of solving partial differential
equations in which the unknowns have been replaced with spectral polynomi-
als. The actual derivation of this method is rather complex, but the method
has numerous advantages. The most interesting advantage is the fact that the
method can parallelize to extreme levels when properly implemented. The task
then was to use spectral elements to analyze a reactor and try to approach this
level of parallelism.

2 Problem Introduction

The specific problem of interest is the LRA rod ejection transient problem.
The full problem is described in [1]. In this particular problem, there are 5
unknowns. The first two are ¢; and ¢s, the neutron fluxes for energy group
1 and 2 respectively. These are solved with the neutron diffusion equation,
Equation (1).

10¢;
V; ot

-V -DiV¢; = S(¢i) (1)

where:

v; = velocity of group ¢
D; = diffusion coefficient of group 14

S(¢;) = the neutron source due to flux in group 4

The neutron diffusion equation can be most succinctly described as the Boltz-
mann transport with the angle of transport integrated in spherical harmonics,
truncated to the linear anisotropic and isotropic terms, and the anisotropic term
replaced with Fick’s law of diffusion. A more thorough derivation is found in
[2], page 518-523.

The next two variables, C; and Cs, are the concentration of delayed precur-
sors. These are neutrons produced due to decay of fission products rather than
directly through fission. Their inclusion massively changes the time evolution
of the problem. Their population is described by Equation 2.

aC;
5 = Di > (vE165) = MCi (2)

J

where:

B; = fraction of fission neutrons that appear in decay group i
v¥¢ i¢; = neutron production rate from flux group j

A; = decay constant for decay group i

The final unknown is 7', or temperature. The probability of a neutron col-
liding is a function of the vibration of the target nucleus, which is due to tem-
perature. As such, the reaction rate will change with temperature. On properly
designed reactors, this change is negative. For the LRA problem, the tempera-
ture is handled with adiabatic heatup, as shown in Equation 3.

S =0 (5r)) 3)

where:

« = fission rate to heat conversion factor

Y j¢; = fission rate from flux group j

The transient involves the change of absorption cross section in 4 fuel bun-
dles. This corresponds to a rod ejecting out of the top of the reactor. This
rapidly increases the reaction rate, which heats up the fuel, which lowers the
reaction rate. The result is a rapid peak in power followed by a drop and an
almost steady state final condition.

3 Spectral Elements

My understanding of spectral elements comes pretty much exclusively from two
sources. The first one, “Spectral element methods: theory and applications”
[3] introduces the mathematics and quadrature methods commonly used. The
second is the set of lecture notes of Paul Fischer [4] which detail practical im-
plementation considerations.

To derive spectral elements, first one replaces all the unknowns of a cell
with an orthogonal set of polynomials. Then, the PDE is cast into the weak
formulation, with test functions being the same orthogonal set of polynomials.
The problem is then integrated over the cell with a quadrature that is easy to
use on said polynomials, and what results is a linear algebra problem.

Boundary conditions between cells are handled by boundary condition ma-
trices. The boundary condition matrix maps a vector onto a cell. The matrix
multiply is then applied cell-by-cell. The sum of the boundary result is then the
final boundary condition. Effectively, an operator A is represented as follows:

A =QTAQ

In this, the matrix Q is the boundary matrix and Aisa block-diagonal matrix
containing the spectral element discretization.

The spectral elements method has both advantages and disadvantages rel-
ative to other methods such as finite difference or finite elements. So long as
all functions in the cell are smooth, spectral elements will converge at an expo-
nential rate to the exact undiscretized solution. Conversely, a discontinuity will
prevent this. The reactor described earlier has discontinuities of cross section
between each fuel bundle. As such, to get the proper convergence, each fuel
bundle is given its own cell. Secondly, almost all quadratures in use are 1D
quadratures multiplied together to form squares, cubes, and hypercubes. The
cell shape must be transformed into a cubic form. Some transformations may
be poor choices and prevent convergence.

Finally, the key advantage is the fact that the A part of a given operator A is
block diagonal. Each matrix multiply can be done completely independent from
one another. It is through this capability that the method can be parallelized.

4 General Algorithm

There are two phases required to perform a transient diffusion analysis. The
first is to calculate the steady state solution before the transient. The algorithm
used is given in Section 4.1. Then, once this initial condition is calculated, it is
substituted into the transient equation and solved. This algorithm is given in
Section 4.2.

4.1 Steady State

Starting with Equation (1), two changes are made. First, the time dependent
component is set to zero, and second, the source is split into two. The first
source, Sy is the fission source. The second source, S,f contains all the non-
fission components, such as absorption and scatter from one group to another.
Due to approximations made either in the formation of the diffusion equation
or in the raw data itself, there is no guarantee that the equation is truly steady
state, even if the reactor represented is indeed stable. In order to correct for

this, the fission source is multiplied by a ratio, 1/k, in which & is the eigenvalue
of the reactor. The result is Equation (4).

1
=V DiV; + Snp(di) = ESf(@') (4)
The resulting equation can be discretized and transformed into the following:
1
Ao = %Mgb

Where A contains the diffusion, absorption and scatter terms, and the F' term
contains the fission generation terms. Multiplying both sides by k yields the
general eigenvalue problem.

There are a wide variety of ways to efficiently solve the generalized eigenvalue
problem. Due to practical concerns, only a few are common. For almost all
algorithms, spectral elements included, A and M only exist as linear operators
rather than matrices. In the majority of nuclear engineering programs, non-
linear power iteration is used. The algorithm is shown in Algorithm 1. This
method has two advantages. The first is that it is very easy to implement. The
second is that it can be accelerated by solving for approximate eigenvectors
which tweak ¢ closer to the correct result.

Algorithm 1 Non-linear power iteration as used in OpenMOC [5]

¢ <+ vector of norm 1

k+1

while not converged do
¢ (A - M)g

[IMo||,

[1AQl,

5
¢ ol
end while

k «+

Other methods, far less commonly used but otherwise still possible, are lin-
ear power iteration, implicitly restarted Arnoldi (IRAM), and Jacobi-Davidson.
Both linear power iteration and IRAM require inverting the A operator to form
a normal eigenvalue problem (k¢ = A~'Mg). Jacobi-Davidson requires an ap-
proximate operator, such as an approximate inverse. From prior experience,
Jacobi-Davidson will be fastest, followed by IRAM, and then followed by linear
power iteration.

One would be inclined to start with Jacobi-Davidson, but due to some is-
sues that occurred during program development, transient analysis was never
successful. My goal was to demonstrate parallelism during a transient solve.
As a compromise, instead, I made the steady state operate very similar algo-
rithmically to the transient analysis. The transient method chosen is described
in Algorithm 3. The linear power iteration in Algorithm 2 is structurally very
similar, and should provide similar performance. The primary difference is the

Algorithm 2 Linear power iteration as used in the spectral elements code
¢ + vector of norm 1
k+1
while not converged do
b+ Mo
#"tD « A~1p, inverse performed by GMRES
k< ¢ . pntD)
S+ Pt

[0],
end while

matrix multiply by M is not required and temperature is not considered. Algo-
rithm 2 is mostly sourced from IterativeSolvers.jl [6].

For this particular problem, the steady state solution looks like Figure 1 and
Figure 2. With no transverse leakage, the eigenvalue is 1.000112 when solved
with order 5.

4.2 Transient Analysis

Transient analysis is significantly more complicated for two reasons. First, the
timescale of interest, typically 0.1 seconds, is much longer than the timescale
for fast neutrons to propagate across the reactor, 10~® seconds. Second, cross
sections are non-linear functions of temperature.

To begin transient analysis, Equation 1 is discretized into the following form:

(to) = (I + ohA — vhiM) (1)
P(to) = To(t1)

In this form, time integration is performed by implicit Euler with a timestep of
h. Implicit Euler was chosen due to the wide range of characteristic timescales
in the problem. If integrated explicitly, far more timesteps would be required
to prevent stability issues. ¢(t1) can be calculated by explicitly inverting the
operator T.

For the temperature non-linearity, a simple iteration scheme is performed.
At the end of each matrix inverse, the temperature is updated. This new tem-
perature is used to reconstruct the operator T. The timestep is performed again.
This is repeated until ¢ converges. As a result, the algorithm for transient anal-
ysis is given in Algorithm 3.

I was successful in implementing all the components of this algorithm. I had
deliberately made it so that for the first second of the transient nothing would
happen. As a consequence, steady state should be maintained. However, this

Order = 5 Eigenmode = 1, Group = 1

0.040

0.035

40.030

40.025

40.020

10.015

0.010

0.005

0.000

o
N
o
o

400 600 800 1000

Figure 1: Group 1 flux primary eigenmode

Order = 5 Eigenmode = 1, Group = 2

0.016

0.014

200
40.012
400 40.010
40.008

600
40.006

800
0.004

0.002
1000

0.000

o

200 400 600 800 1000

Figure 2: Group 2 flux primary eigenmode

Algorithm 3 Transient analysis as used in the spectral elements code. Delayed
precursors ignored for clarity.
¢ + steady state result
k < steady state result
T+ 300 K
while not finished with time stepping do
G(tns1) — T 1¢(t,), with T evaluated at T(t,,)
Calculate T'(tp41) from ¢(t,,1) and T'(t,,)
while T not converged do
H(tni1) — T 1¢(t,), with T evaluated at T'(t,41)
Calculate T(t,41) from ¢(t, 1) and T(t,,)
end while

¢(tn+1) A é(thrl)

T(tn+1) — T<tn+1)
end while

did not occur for unknown reasons. Time constraints forced the modification of
the steady state problem into a form that was functionally very similar to the
above algorithm as mentioned prior.

5 Parallelization

In order to perform Algorithm 2, several components are necessary. These would
be the implementation of the matrix vector product and simple vector operations
such as norm and dot. The parallelization of these components could then be
built out to construct GMRES for the matrix inverse. The GMRES method used
is heavily based on the GMRES implementation in IterativeSolvers. jl, with
a few performance issues fixed. When time allows, a pull request will be made
to the repository to include these enhancements.

5.1 Matrix Multiply

As explained earlier in Section 3, a spectral elements operator will have an inner
block-diagonal matrix and an outer boundary condition matrix. The inner part
is trivial to parallelize (for each core, multiply the decomposed variable to get
a decomposed result). The boundary condition is the tricky part. The process
I used is as shown in Algorithm 4.

The result is that each cell has an “authoratative” value for each unknown
in the problem, which eliminates the need to recompose and decompose the
vector.

Algorithm 4 Matrix multiply.

v; < spatially decomposed vector

v; 1s sent to each cell ¢ via MPI

Yi + Myv;

Boundary, s; is sent to cell ¢ from all neighbors of ¢
Yi < Yi + S

5.2 Vector Operations

Vector operations are simplified due to the fact that each cell has an authorita-
tive value. At the beginning of the simulation, a responsibility vector is created.
This vector contains a “1” if this is the first cell that has said unknown, and
“0” otherwise. This is used in the norm calculation as shown in Algorithm 5.

Algorithm 5 Norm calculation.
b < a zero vector which is as long as there are cells
r is the responsibility vector
v is the vector we want the norm of
for each cell © do
b; < sumabs2(v.*r)
end for
b; is broadcast from each cell i to all other cells
norm(v) < y/sum(b)

This exact same layout can be used for dot products and sums. With these
two components, a full GMRES implementation can be made and a steady state
or transient analysis performed.

6 Results

The first set of parallel scaling tests were done on four nodes of a cluster. Each
node had dual Intel E5420 CPUs operating at 2.5 GHz. The communication
topology between nodes was 1Gbps ethernet. OpenMPI was used as the MPI
implementation.

The first run had a 5th order problem, in which there were 72 unknowns
per cell. Figure 3 shows the runtime. As shown, it appears that scaling almost
followed the ideal curve on one node, but as more nodes were included perfor-
mance fell apart. This most likely indicates that it takes more time to send the
results between processes than it does to actually compute the results.

As such, a 10th order problem was run, such that there were now 242 un-
knowns per cell. The results are shown in Figure 4. For this problem, scaling on
a single node was particularly poor, but the scaling between nodes improved.

My first inclination was that I had hit a memory bandwidth issue. The
thinking behind this was that memory bandwidth is fixed on a per-node basis

Time, s

Time, s

10°

Order 5 |

1 Node
2 Node
3 Node
4 Node
Ideal

Total Cores

Figure 3: Time as a function of core count, order 5

‘Order 10‘

1 Node
2 Node
3 Node
4 Node

Total Cores

Figure 4: Time as a function of core count, order 10

120 Time VS. Memory B‘andwi‘dth, Order 1Q

110¢ 1

100} 1

Of — 1 Thread |/
— 2 Threads
— 3 Threads

(o]

Time, s
[ee]
o

13 14 15 16 17 18 19 20 21

50 :

Peak Sequential Memory Bandwidth, GB/s

Figure 5: Memory bandwidth scaling

and does not scale with thread count on most architectures. Some architectures,
like the Xeon Phi 2nd generation, cannot saturate memory bandwidth with any
single thread regardless of what it was doing. That aside, another experiment
was run on another computer in which the memory clockspeed could be varied.
As such, the clockspeed was changed to all available stable configurations, with
DRAM timing kept approximately constant to not affect latency. The results of
this process are shown in Figure 5. The approximately linear scaling indicates
that memory bandwidth is a significant limiter on current performance.

7 Conclusions

Overall, while the spectral elements method has many promising capabilities,
this particular implementation was rather poor. While properly coded spectral
elements can and has scaled to hundreds of thousands of cores, the upper limit
for this program is probably 8. The algorithm is heavily limited by memory
bandwidth, indicating that speedups could be had through de-vectorizing some
code, as vectorization makes intermediate variables. Finally, I learned that
MPI is probably not the best solution for Julia and should be avoided when
reasonable. A prodigious quantity of boilerplate was written, even though the
Julia MPI implementation was already rather concise.

10

References

[1] Argonne code center: Benchmark problem book, Tech. Rep. ANL-7416, Ar-
gonne National Laboratory (1977).

[2] A. Prinja, E. Larsen, General principles of neutron transport, in: D. Cacuci
(Ed.), Handbook of Nuclear Engineering, Springer US, 2010, pp. 427-542.
doi:10.1007/978-0-387-98149-9_5.

URL http://dx.doi.org/10.1007/978-0-387-98149-9.5

[3] F. Van de Vosse, P. Minev, Spectral elements methods: Theory and appli-
cations, Tech. rep., EUT Report 96-W-001 ISBN 90-236-0318-5, Eindhoven
University of Technology (1996).

[4] P. Fischer, Paul fischer’s homepage (2011).
URL http://www.mcs.anl.gov/ fischer/

[5] 3. eigenvalue calculations — openmoc documentation (2015).
URL https://mit-crpg.github.io/0penMOC/methods/eigenvalue_calculations.html

[6] Julialang/iterativesolvers.jl (2015).
URL https://github.com/Julialang/IterativeSolvers.jl

11

