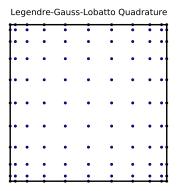
Parallelizing Spectral Elements


Colin Josey

December 2, 2015

What are spectral elements?

Spectral elements are a numerical PDE method.

Variables are replaced by polynomials, and integrated by a quadrature.

2 / 13

What am I solving?

I'm solving the multigroup neutron diffusion equation:

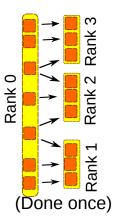
change in time
$$\underbrace{\frac{1}{v_i}\frac{\partial \phi_i}{\partial t}}_{\text{diffusion}} - \underbrace{\nabla \cdot D_i \nabla \phi_j}_{\text{diffusion}} = \underbrace{S(\phi_i)}_{\text{source}}$$

The problem I am solving is known as the LRA benchmark.

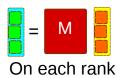
It is a symmetric 2D nuclear reactor with group-collapsed cross sections.

Colin Josey

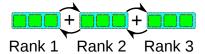
How did I make it parallel?


To advance in time implicitly, I implemented GMRES. GMRES requires 3 components:

- A parallel matmul
- A parallel norm
- A parallel orthogonalization


(Also, GMRES + power iteration can solve the generalized eigenvalue problem for steady state)

matmul


1. Broadcast Vector

2. Matrix Multiply

3. Share Boundaries

norm

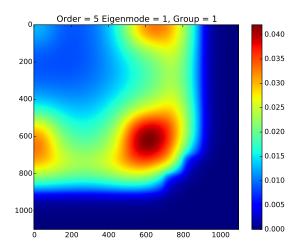
Original Vector

Decomposed Vector

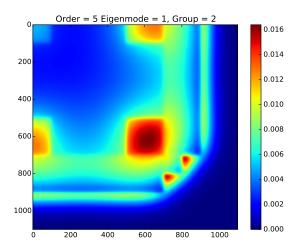
Responsibility Vector

$$v[1] = sumabs2(123.*111)$$

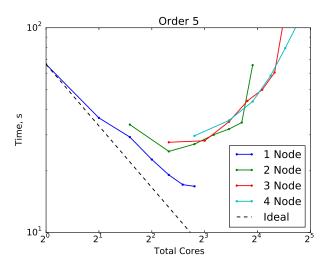
$$norm = sqrt(sum(v))$$

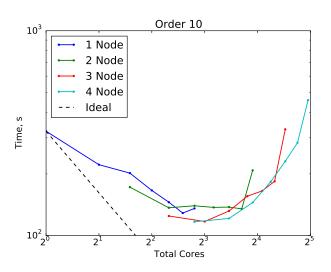


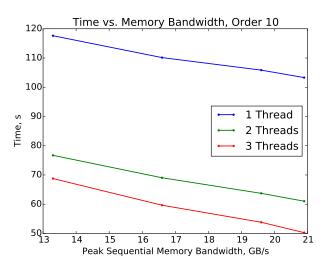
Orthogonalization


Orthogonalization is simple:

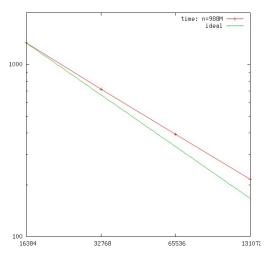
- Perform dot product like the norm
- Broadcast it to all cores
- O Do Modified Gram Schmidt with decomposed vectors


Steady State Results - Group 1


Steady State Results – Group 2


Time Used - Order 5

Time Used - Order 10



Time vs. Bandwidth

NEK5000

Spectral elements can be done far better than this though:

