
Julia vs. C
Berj Chilingirian (berjc@mit.edu)
Varun Mohan (vmohan@mit.edu)
William Qian (wqian94@mit.edu)

mailto:berjc@mit.edu
mailto:vmohan@mit.edu
mailto:wqian94@mit.edu

Goal
To understand why Julia may be slower than C in
serial and parallel worlds.

Why?
As a developer, need to understand the fundamental

benefits/costs of choosing a language.

But also...
Julia isn’t perfect yet; maybe we can find something

that can be improved.

Experimental Design

(1) Select code from Julia Base library.
(2) Translate directly to C and compare.
(3) Optimize both in the same way and compare.
(4) Parallelize and compare.

Selection Phase
MergeSort implementation in Base.Sort

Reasons:

(1) NOT embarrassingly parallel
(2) Can use SharedArrays (experimental feature)
(3) Everyone knows MergeSort

Base Comparison Phase
Translate Julia implementation directly to C.

For 10 trials with array of 223 32-bit elements

Julia C
0.86s 0.80s

C is only 7.5% faster than Julia

Reasons for Performance Differences

● Vectorization
○ Automatic vectorization in GCC O3 optimizations
○ Performs 16/32 byte move in one instruction

● Branching
○ cmov and bithacks in C vs. cmp and jmp instructions in Julia

Optimization Comparison Phase
Perform the same optimizations on both codes.

Use copy! instead of while loop...

i, j = 1, lo

while j <= half

 t[i] = v[j]

 i += 1

 j += 1

end

copy!(t, lo, v, lo, m - lo + 1)

Uses memmove (gets vectorized)

Optimization Comparison Phase
Perform the same optimizations on both codes.

For 10 trials with array of 223 32-bit elements

Julia C
0.83s 0.80s

C is only 3.75% faster than Julia

Insight
Julia can be even faster (with very little effort!)

Parallel Comparison Phase - Issues with Julia

● Using @everywhere not easy
● similar() with SharedArray doesn’t work
● Harder to parallelize Julia code compared to C code

Parallel Comparison Phase - Results

Parallelize C with Cilk and Julia
with @spawnat and SharedArray.

Reasons for Performance Difference

● Work-Stealing
○ Julia workers performed no additional work after sorting provided subarray

● SharedArray is very expensive
○ Use mmap on data region

Conclusion
Julia is fast…

But parallelizing non-trivial code is challenging

Future Work

● Implement work-stealing in Julia
● Improvements to JIT compiler (HotSpot-like optimizations)
● Find places where Julia can be faster

