JULIA-ENABLED COMPUTATION OF MOLECULAR LIBRARY
COMPLEXITY IN DNA SEQUENCING

Larson Hogstrom, Mukarram Tahir, Andres Hasfura
Massachusetts Institute of Technology, Cambridge, Massachusetts, USA

18.337/6.338 Parallel Computing
Final Report
December 13, 2015

ABSTRACT

As the throughput of DNA sequencing increases, major research facilities are
performing genomic profiling on tens of thousands of samples per year with a single
genome often exceeding 400GB of raw data. Julia’s library of mathematical packages,
its speed in numeric computing, and functionality to support operations performed in
parallel are likely suited to many challenges in genomic processing and analysis. To test
this hypothesis, we used Julia to implement an existing modeling strategy to predict a
commonly observed sequencing artifact [Daley, 2013] in order to improve predictions for
return on investment for performing new sequencing experiments for individual
genomes. Our results provide insight into Julia’s suitability for genomic analysis
including rapid prototyping, error analysis with C++ code, and a new parallel algorithm
for the identification of duplicate sequencing reads.

. INTRODUCTION

Factors affecting computer language design and selection in computational biology
have been discussed at length in recent years (Gentleman, 2004 & Nair, 2005).
Historically, the field’s most frequently used and computationally demanding tools,
including algorithms for DNA alignment and sequence similarity queries, have been
implemented in low-level languages such as C, C++, or Fortran. The ability to compile
such tools into highly efficient machine code has provided obvious performance
benefits, but more recent scientific and computational demands in biology have
transitioned, driving many scientists to begin using high-level and dynamically typed
computer languages. This transition has been driven, in part, by the flexibility offered by
high-level languages in response to fast-paced changes in data collection and data
structures that arise with new experimental techniques from molecular biology. Rapid

development of new tools and data types have put a heavy emphasis on prototyping,
ease of development cycles, and code maintainability (Nair, 2005). For example, the
Perl computer language gained popularity in bioinformatics during the 1990s for its
syntactic brevity, handling of regular expressions, and support of both procedural and
object-oriented programing. More recently, computational biologist have relied heavily
on high-level languages including R and python to carry out cycles of analysis and
processing. The community of researchers developing new capabilities in these
languages often place emphasis on functionality that increases the ease of data
handling and statistical modeling. The Julia language, with strength in numeric
computing, is poised to build on the best parts of other high-level languages by
extending performance and code interpretability when working with very large data sets
observed in DNA sequencing studies. A few of Julia’s most important design features
include the use of multiple dispatch, just-in-time compilation, and metaprogramming.

Here we apply the Julia in extracting and analyzing frequency information from raw DNA
sequencing data. Our efforts are aimed at addressing an artifact observed in popular
DNA sequencing strategies that occurs when a small fraction of sequenced regions are
duplicated at high frequency. Such region duplicates are problematic because they
represent non-independent measurements of the underlying genome and ultimately
waste storage and compute resources. Improved models to predict the impact of
sequence duplicates have recently been described [Daley, 2013], but the technical
infrastructure to run this computation at scale is currently lacking. Our project consists of
new Julia functionality to launch and manage duplicate marking events in sequencing
files. We also created Julia wrappers to manage existing C code [Daley, 2013]
predicting return on investment for performing new sequencing experiments for
individual genomes using methods based on the Good Toulmin model.

preseq yield estimate: based on 3 read
30 le5 groups for Nexome sample 376014
b T T T T

expected distinct

g ; SRR

| —— EXPECTED DISTINCT ||
—— LOWER_0.95C]|
—— UPPER_0.95CI
e preseq observed
® picard observed

1 1 |
0.0 0.2 0.4 0.6 0.8
reads observed le6

Figure 1. Representative model output for a single sample processed with the preseq.jl tool.
The goal of this method was to improve predictions of information acquisition as sequencing
studies proceeds.

. APPROACH

We began by benchmarking the existing preseq C++ code by computing the complexity
curve for a series of alignment data (BAM) files. This was applied to 50 exome
sequencing samples, allowing us to perform timing profiles and identify bottlenecks.
Through a combination of profiling efforts, we mapped the procedure through which
preseq generates the complexity curve for a given BAM file input. First, POS and FLAG
entries are extracted for each read from the binary BAM file, which respectively
correspond to the position of a read on the reference genome and an integer value from
which properties of a read (such as whether it is a primary read or if it is mapped to the
reference) can be deduced through bitwise operations. Preseq then filters the reads
based on their FLAG values, and then proceeds to identify duplicates among these
reads. Two reads are classified by preseq as duplicate if their position on the reference
genome (signified by POS) are identical, and preseq maintains a count of these
duplicates. These so-called read counts are then used for calculating the complexity
curve, which is the output of the code. This procedure is summarized in the schematic
shown in Figure 2. Of these steps, we determined that approximately 95% of all
compute time was expended in loading, filtering, and counting duplicate reads in the

BAM sequencing file. Given the near embarrassingly parallel nature of these tasks, we
recognized the opportunity to re-implement them in Julia and attempt to achieve
speedup through its parallel computing capabilities. Once the read counts are
calculated, the C++ preseq code can be called with these pre-calculated counts (rather
than the original BAM file) for the final complexity curve calculation.

BOTTLENECK

POS, FLAG Filter reads Calculate Calculate
a — — i =
5 based on read counts complexity

FLAG from POS ;
s Complexity

BAM curve

Figure 2. Overview of processing and modeling strategy used by preseq. We identified read
filtering using FLAG and read counting using POS as the bottleneck best suited for optimization
and parallelization in Julia.

lll. PARALLEL ALGORITHM FOR READ COUNTS

The product of our efforts to parallelize the preseq.cpp code was a Julia wrapper
preseq.jl, which handles all parts of the computation except the final calculation of
complexity from read counts. The input to preseq.jl is a binary BAM file, but unlike
preseq.cpp, this cannot be directly read for FLAG and POS values as there is currently
no Julia library for interfacing with BAM alignment files. We therefore utilize an external
executable known as samtools for converting the binary BAM file to a plaintext SAM file,
which is then read into a DistributedArray object. When worker nodes are spawned in
Julia, each node then has access to only a portion of the SAM entries for further
processing. These worker nodes proceed to extracting POS and FLAG fields from their
given set of SAM entries, and then apply filters based on FLAG in a manner that is
identical to the original C++ code. The filtered reads are then examined for duplicates,
and a count of duplicates is maintained at each worker node. Given that a duplicate
may be present across multiple worker nodes, the individual count arrays from the
worker nodes are examined for overlap once they are returned to the master node. The
final counts are then written to a temporary file on disk, and preseq.cpp is called with
this count file (rather than the BAM file) for a much faster complexity curve calculation.
The overall implementation is summarized in Figure 3.

WORKER NODES

SAM > Filter > Count
SAM Filter | Count M
=LE L | erge
SAM N counts
SAM - Filter > Count
BAM i " = = ,
SAM - Filter | Count
i
. Calculate %
: complexity
Complexity Read
curve counts

Figure 3. Schematic of the preseq.jl, a Julia wrapper that we implemented for complexity curve
calculation from a BAM file input. Julia worker nodes perform the filtering and read count
calculations in parallel, and the result is offloaded to the existing preseq.cpp code for the final
complexity calculation.

From our earlier benchmarking of the serial preseq.cpp code, we determined execution
times of approximately 5, 7, and 12 seconds respectively for 35 Mb, 67 Mb, and 135 Mb
BAM files. For comparison, we ran our Julia wrapper preseq.jl on these three input file
sizes, and varied the number of cores to determine reduction in execution time as the
number of cores is increased. Figure 4 shows a plot of these execution times, and
indicates a substantial speedup as the first few cores are added. A plateau in speedup
is quickly reached, but the plateau varied according to file size. Given that production
BAM files are of much larger sizes, we expect efficient consumption of a large number
of cores before such a point of diminishing returns is reached. It is concerning though,
that the execution time at which these curves level off is still higher than the execution
time of the serial preseq.cpp code for the corresponding input file size. To investigate
this, we visualized the various components of the execution time for the 135 Mb input
file, as shown in Figure 4 (lower). We notice immediately that filtering and counting
reads, which were subject to parallelization, contribute to the majority of the speedup as
the number of cores is increased. However, there appears to be a constant and
substantial overhead associated with reading the BAM files in preseq.jl that is certainly
absent in the preseq.cpp code. Unlike the preseq.cpp code, which is able to directly
access POS and FLAG fields for all entries using a C++ API that interfaces with BAM
files, our preseq.jl code uses an external executable (samtools) to first convert the
binary BAM file to a plaintext SAM file, and then extract POS and FLAG fields from each

5

--=- 35M(55)
== 67 M(75s)
——135M (12 3)

200

150

100

Execution time (s)

50

- _
-
"o, T - = = = g = g —— g =
B e o == -y S

5 10 15

Number of cores

Merging counts
Filtering and counting
Spawning workers
Reading BAM files

EEN

(s)
8
|

Execution time (s

Number of cores

Figure 4. (upper) Execution time of preseq.jl as a function of the number of parallel cores for
three input BAM file sizes. For comparison, the execution time of the serial preseq.cpp code is
shown in parenthesis in the legend. (lower) Breakdown of the execution time for the 135 Mb
BAM file, demonstrating excellent performance improvement in read count calculation as the
number of cores is increased, but significant overhead incurred from reading the BAM file to a
plaintext SAM file in memory.

plaintext entry. This leads to a massive performance loss in our Julia wrapper
(compared to the original serial code). This is not especially concerning, however, since
a Julia library for interfacing with BAM files currently appears to be under development,
and in future iterations of this code, we hope to utilize it in our Julia wrapper to eliminate
this bottleneck associated with reading BAM files.

0.30 preseq yield estimate error for Nexome samples

percent errar
o
[
wun

T
I
I
0.05} :
I
I
I

1
reads observed

Figure 5. Rates of model prediction errors were calculated for 50 nexome samples.
IV. ERROR ANALYSIS

We evaluated model accuracy of the Julia-based preseq output. The preseq.jl modeling
effort yielded a median error of 12% in predicting the number of unique molecules
observed in the 50 exome sequencing studies examined (Figure 5). In this analysis, we
used 3 read groups out of 16 in each sample to train the preseq model. The
extrapolation of expected unique reads was calculated by preseq and compared to the
true counts of unique reads observed in the full sequencing files. These results were
promising as they show an improvement over existing strategies that have been applied
to our working set of exome samples. Additionally, we assessed the discrepancy of read
counting after implementation in Julia as compared with C++. We observed differences
which were a small fraction of total counts performed and discrepancies were reduced
as more reads were read in.

0.00015 percent difference in preseq vs preseq.jl read counts

0.00010 H

0.00005

AN

A Wk LAV
AR
Vi SRS W W

0.00000

' :

percent differnce

—0.00005

—0.00010

—0.00015

0 100000 200000 300000 400000 500000 600000 700000 800000 900000
read occurences

Figure 5. Small differences in read counts were observed when comparing results from Julia vs.
C++ implementation. The effects of these errors were generally small and diminished as more
reads were counted from each sequencing file.

V. EVALUATING JULIA OVERHEAD AND STARTUP

Using Julia allowed for simple parallelization of the read count calculation, but it also
introduced unexpected overhead issues. We found that a few basic operations of the
Julia language took longer to accomplish than similar operations in more mature
languages, such as python and C. In this section, these time consuming operations are
discussed and benchmarked to show the effect on the preseq.jl package.

In this section, all speed tests were performed using a 13-Inch Macbook Air with a 1.3
GHz Intel i5 processor and 4GB of DDR3 RAM. One of the first things noticed when
performing read counts in Julia was the Julia start time. Without user specified options,
the average time on the above setup was found to be 1.015 seconds. This start up time
continues to increase as users specify how many cores to start Julia with. Figure 6
shows the relationship between startup time and the number of cores specified on
startup.

Start Time Vs. Num Cores

10

Start Time

1 2 3 4 5 6 7 8
Num Cores

Figure 6. Julia’s startup time versus the number of cores specified at startup time.

Preseq.jl also imports packages built by the Julia community, which slowed the runtime
noticeably. Of the packages imported by the preseq.jl library, the most important to the
parallel speedup of read counts is DistributedArrays.jl, which allows computation on
arrays to be split over multiple processors and finally merged once each processor’s
portion of the array has been completed. To import this package alone cost over a
second, which is very expensive considering given enough cores a 135MB BAM file can
be processed in around 10 seconds.

Because of the cost of importing this one package, standard import times were also
studied and benchmarked. Many common modules were imported and timed, and the
following histogram was produced from the results.

0.0 0.2

Import Times

0.6 0.8

Times

1.0 1.2

Figure 7. Histogram of import times of different common modules, including DistributedArrays.jl,
a crucial package for the parallelization of the read count computation.

We also examined /O costs as an important function of Julia’s performance in the
preseq.jl tool. Our algorithm relied on the writing of an intermediate read counts file. We
benchmarked the time required by Julia to perform I/O as compared to C++, in order to
determine whether the additional I/O would prove costly in our efforts to create a speed
up. Below are read and write costs between C++ and Julia for different sized reads and
writes. Figure 8 shows the 1/0 time between Julia and C++ is quite similar. This shows
that there is no major cost of using Julia to perform the writing of an intermediate read

count file.

Write Time

Write Times vs File Size

File Size

Read Times vs File Size

Read Time

File Size

Figure 8. Log log (base 10 bytes) plot of the time to write different file sizes between Julia and
C++ (left). Log log (base 10 bytes) plot of the time to read different file sizes between Julia and

C++ (right).

10

VI. CONCLUSION

Predicting the molecular complexity of a genomic sequence library is a time consuming
part of genomic analysis. This project tackled this issue by parallelizing a popular
molecular complexity prediction tool, preseq.cpp. We were able to benchmark the
parallelized preseq on production servers, and display a greater than 10X speedup.
One limitation of the current project was the lack of a Julia-specific tool for interfacing
with BAM alignment files. Our results show that reading of the binary sequencing file is
now a bottleneck in the Julia-based read counting algorithm. The construction of a file
reader was beyond the scope of our project, but efforts are ongoing in the Julia
community to enable Julia to read and filter binary files directly. This would eliminate
unnecessary BAM files handling and greatly speedup preseq.jl.

VIl. REFERENCES

Daley, T., and Smith, A.D. "Predicting the molecular complexity of sequencing libraries." Nature
methods 10.4 (2013): 325-327.

R. Gentleman, et al. “Bioconductor: open software development for computational biology and
bioinformatics” (2004)

Nair, M. Niedner, R.H, Grbbskov, M. “Perl in bioinformatics”. (2005) DOI:
10.1002/047001153X.g409321

11

