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Motivation 
 
If I ask you to describe an image, you would be able to give me a rich description.  You 
could give semantic information (e.g., What objects are in it? Where is this picture 
taken?  What do you think the scene will look like in three seconds? Etc.), low-level 
information (e.g., Where are the lines and edges?  What are the colors?  Etc.), and 
putatively intermediate-level information (Where are the surfaces?  What are the 
textures on the surfaces?  What are the parts of the objects and what are the relative 
positions of those parts? Etc.)  People are quite good at describing an image at various 
levels of description, from relatively high-level semantics to lower-level, nearly pixel-
based properties.   
 
I would argue that people are much worse at describing a sound at multiple levels of 
abstraction.  People can often label the source of the sound (a person talk or walking, a 
dog panting, bacon sizzling).  But people seem to have a relatively limited vocabulary for 
describing sound at lower or intermediate levels.  People can certainly talk about pitch 
and loudness, but little beyond that.  (It’s arguable that trained musicians do have a 
richer vocabulary, but crucially this expanded vocabulary requires training.)  At the very 
least, I don’t feel like I have nearly as naturally rich vocabulary for describing sounds as I 
do for describing images, and as an auditory neuroscientist I want to better understand 
what stuff makes up sounds.  So I did this project.  I used Julia to create a coarse model 
of the cochlea and then measured and visualized that model’s response to sounds in 
real-time recorded from a computer’s microphone. 
 
 
The Cochlea & The Cochleogram 
 
The cochlea transduces the mechanical energy of sound vibrations to the electrical 
energy used in the nervous system.  A sound pressure waveform travels down the ear 
canal, vibrates the tympanic membrane (i.e., the “ear drum”), which in turns vibrates a 
handful of bones in the middle ear, which in turn vibrates the fluid inside the cochlea, 
which in turn vibrates the basilar membrane (see Fig 1., left).  The physical properties of 
the basilar membrane vary along its length.  Near the base of the cochlea, the basilar 
membrane is narrow and stiff, while farther towards its apical end it is wider and floppier 
(see Fig. 1, right).  Due to the material properties of the basilar membrane, sounds of 
different frequencies cause different portions of it to vibrate.  Low-frequency sounds 
vibrate more apical parts of the basilar membrane, while high frequency sounds vibrate 
more basal parts.  A given cochlea neuron responses to vibrations in a small local 
portion of the basilar membrane and thus cochlear neurons selectively respond to 
certain frequencies.  In essence, the cochlea performs a time-frequency decomposition 
of a given sound.   
 
The cochleogram is a coarse model of cochlear neurons (Patterson et al., 1987; Slaney, 
1995).  It is a time-frequency decomposition that is similar to a spectrogram or a short-



time Fourier transform, but is different in a handful of key ways which were inspired by 
observations about the cochlea.  First, the frequency-axis is roughly log-spaced, inspired 
by the frequency tuning pattern along the basilar membrane.  Second, different time-
frequency bins can overlap, because the size of the filter bandwidth is determined by 
inferences about the bandwidth of human cochlear filters (Moore and Glasberg, 1983).  
Third, the amplitudes of each spectrotemporal bin go through a compressive 
nonlinearity, because basilar membrane motion appears to have a similar relationship to 
sound level (Ruggero et al., 1997).   
 
Computationally, the cochleogram 
consists of three steps: 
 

1. First, the incoming sound is passed 
through a bank of linear filters.  
These filters are localized in 
frequency and their bandwidths are 
determined by observations of how 
bandwidth and the center-
frequency are related in the cochlea 
(Moore and Glasberg, 1983).  Each 
filter’s shape in the frequency 
domain is one half cycle of a 
cosine.     

 
2. Second, the envelope of the time 

course of these filters is extracted.  
Specifically, we use the Hilbert 
transform to compute the analytic 
representation of each filter’s time 
course.  The Hilbert transform 
generates a complex-valued signal 
where the real part is the original 
time course and the imaginary part 
is that same time course, but 
shifted in phase by a quarter cycle.  
For instance, the Hilbert transform 
of the sine function is the cosine.  
Once we have the analytic signal, 
we compute the magnitude to 
generate the envelope. 

 
3. Lastly, we downsample the 

envelopes of the time courses of 
each filter, simply for ease of 
plotting. 

 
The cochleogram certainly does not recapitulate all we know about cochlear processing 
(e.g., Dallas, 1992; Heinz et al., 2001; Ruggero et al., 1992, 1997; Russell and Nilsen, 
1997; Schwartz and Simoncelli, 2001; Sellick and Russell, 1979).  Nonetheless it is a 
reasonable coarse model of the first stage of auditory processing since it captures a few 

Figure 1.  Cochlea schematic.  Left: Outer, 
middle, and inner ear. Note that the sound 
pressure waveform propagates down the ear canal, 
vibrates the tympanic membrane (ear drum), then 
vibrates the various bones of the middle ear, which 
in turn vibrates the oval window on the cochlea, 
which in turn vibrates fluid within the cochlea, which 
in turn vibrates the basilar membrane.  Right: 
Basilar membrane. The basilar membrane is 
curled in a snail-like pattern in the cochlea, and 
here it is schematically shown flattened.  Note that 
different portions of the membrane have different 
material properties which in turn affects how the 
membrane vibrates with respect to different 
incoming frequencies. 



key properties of cochlea processing, such as frequency selectivity and loudness 
compression.  
 
Cochlea.jl overview 
 
Cochlea.jl has three key parts.  It interfaces with the microphone, then computes a 
cochleogram on the input waveform, and finally plots that waveform in a Jupyter 
notebook.  It iterates through this procedure for as long as the user specifies. 
 
Given that this is a real-time visualizer, how high-fidelity of cochleogram you can display 
is constrained by the speed of the code.  Given the importance of efficiency and speed, I 
followed some good best practices to help the Julia compiler optimize efficiently, 
including having no globals, making variables constants when I can, and explicitly 
labeling the inputs to functions. 
 
I also sought to speed up the performance in other ways, as well, and below I below I 
discuss how I sped up interfacing with the microphone and computing the cochleogram.  
Plotting was relatively straightforward and there was not much sophisticated there. 
 
Interfacing with the microphone 
The code must interface with the microphone.  My first-pass implementation of this 
interface was simply to call a function in python that used PyAudio to fetch data from the 
microphone and write wav files with the following call: 
 

@async run(`python recordWriteWav.py  
$sd_name  
$n_seconds_to_record  
$record_secs_len  
$sampling_rate`) 

 
The script recordWriteWav.py fetched the data from the microphone and then wrote it 
to a wav file.  Then I simply had a big while loop that checked whether a new file had 
been written and read it in if it had, plotted it, and so on.   
 
I figured I could speed up this process by using PyCall directly in Julia, which I ultimately 
implemented instead.  It consisted of a handful of relatively simple calls: 

 
p = pyaudio.PyAudio() 
 
stream = p[:open](format=pa_format, 
                  channels=pa_channels, 
                  rate=pa_sampling_rate, 
                  input=true, 
                  frames_per_buffer=pa_samples_per_chunk) 
 
wav_raw = pyeval(  

"converter(stream.read(chunk_length),dtype=thisDtype)",  
Array{Int16,1}, # return type 

         stream=stream,  
chunk_length=pa_samples_per_chunk, 

         converter=np.fromstring,  
thisDtype=np.int16) 

 



However, Julia calling Python is not the most elegant (or likely quickest) solution. 
PortAudio is an excellent lower-level API that’s written in C and C++.  It offers substantial 
control over auditory input and output via a simple callback function or a blocking 
read/write interface.  Matlab and Python both have bindings to PortAudio, such as the 
PyAudio module that I used here.  Julia also has a module that was built for this 
purpose: AudioIO.jl.  Unfortunately, this module appears to have been broken by v0.4 
and it hasn’t been maintained.  If this project were longer term, I would want to create 
Julia bindings for PortAudio.   
 
 
Generating the cochleogram 
 
I outlined the steps of cochleogram generation above, and I originally implemented those 
steps in a relatively straightforward way: 
 

# perform convolution of time domain by performing  
# point-wise multiplication in the frequency domain 
F = fft(wav)  
subbands_fourier = broadcast(.*, F, fft_filts); 
subbands = real(ifft(subbands_fourier,1)) # back in time domain 
     
# now get the envelopes of  the signal by computing the magnitude  
# of the analytic signal 
analytic_subbands = hilbert(subbands) 
subbands_envs = abs(analytic_subbands) 

 
When I profiled the code, I saw that, perhaps unsurprisingly, these steps were the key 
limiting factor in the speed at which I could iterate through and generate cochleograms.  
I made a few key changes.  First, my waveform is a real-valued array so I ought to use 
rfft instead of fft, which roughly halved the amount of compute time.  Second, the 
standard algorithm for the Hilbert transform (and the one Julia uses) transforms the 
signal to the frequency domain and brings it back with an ifft.  Therefore, I have two 
unnecessary matrix multiplies here, which I was able to get rid of.  The more optimized 
code below:	  
 

# get subbands in the fourier domain 
F_r = rfft(wav) 
subbands_fourier_r = broadcast(.*, 

    F_r,  
    fft_filts[1:Int(n/2)+1,:]) 

 
subbands_fourier_r_full = zeros(Complex128,  

     n, 
     size(subbands_fourier_r,2)) 

subbands_fourier_r_full[1:n2+1,:] = subbands_fourier_r 
 
# manually compute the Hilbert transform in the frequency domain  
# w/o going back to the time domain 
h = zeros(n) 
h[ [1,n2+1] ] = 1 
h[2:n2] = 2 # implicitly have the zeros for the rest 
analytic_subbands_F = broadcast(.*, subbands_fourier_r_full, h) 
 
# bring this back to the time domain and get the envelopes 
analytic_subbands_r = ifft(analytic_subbands_F,1) 



subbands_envs = abs(analytic_subbands_r) 
 
 
Miscellaneous tricks to speed things up 
 
I also played with a variety of tricks outside of the scope of Julia to speed things up.  
Given that I was downsampling the envelopes and only measuring the frequency 
responses up to 7 kHz, I altered my computer’s microphone settings to reduce the 
fidelity of the input.  Given that these options were relatively limited (lowest possibility 
was 32 kHz), I also immediately decimated the signal when I read it from the microphone 
buffer.   
 
I also played with the “nice” value for the process that was running the notebook and the 
Julia kernel, to make buffer overflows less likely.  E.g., from a shell call like: sudo 
renice -n 10 -p $pid.  Where $pid was the process ID.  It’s unclear to what extent 
playing with the nice actually affected performance. 
 
Example call 
 
In an Jupyter/IJulia notebook you can simply import this script and generate a real time 
cochleogram.  See example below: 
 

include("Cochlea.jl") 
plotRealTimeCgram( 100, # n_filters 
                   400, # subbands_ds_factor 
                   1.0,  # record_secs_len 
                   16, 8) # fig_x, fig_y 

 
 
Figure 2 shows a plot generated from this code. 
 

 
 

Figure 2. Example cochleogram generated from the code in real time.  This is me talking to in a 
relatively dry background.  Y axis indicates frequency; x axis indicates time; the color of shading is 
amplitude of response. 



 
 
Conclusions 
 
Here I implemented a real-time cochleogram visualizer in Julia that interfaces with the 
IJulia/Jupyter notebook.  In my efforts to optimize the speed of my code, I think the 
biggest boon was from an algorithmic side – i.e., realizing that I can use rfft and 
implement the Hilbert transform myself and skip a couple large matrix multiplies.  In any 
case, this was a fun and useful project to get more familiar with Julia.  Thanks for a good 
class. 
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