
Course 18.337 Final Project Report: D4M in

Julia

Alexander Y Chen, Dr. Jeremy Kepner, Prof. Alan Edelman

November 21 2015

Abstract

In this project, Dynamic Distributed Dimensional Data Model (D4M)
was implemented in Julia. D4M is a database computation system made in
MIT Lincoln Lab originally coded in Octave and Matlab. D4M formulates
an associative array that includes string row and column indexing and
edge values, unlike the logical Associative Collection that was already
implemented in Julia. This project aims to enhance Julia’s capability in
database computation by adding a D4M module. This report summarizes
the development and contribution thus far with discussion on design points
during the importing process from Matlab.

Introduction

In essence, D4M is an ”interface to support efficient development of mathe-
matically based analytics”, (Kepner et. al). D4M allows four commonly uses
categories of data storages: Associative Array, Tuple Store, Parallel Client, Dis-
tributed Array, to be represented in one common mathematical representation.
Thus, it allows intuitive development of practical programs to mathematically
operate on these storages through matrix operations. By building on top of
Julia, D4M enables Julia to compute String triplet store data intuitively.

Goal

The goal of this project is to implement a base level of D4M in the Julia way,
and push its performance as close to Julia’s native operations as possible. There
are two main bottleneck for D4M: string sorting and sparse matrix operation.
This project can be considered be successful only if :

•

1

1

2

3

4

5

6

7

8

9

Row

Column

Figure 1: Data captured by Dictionary in Julia

6 7 8 9

1 edge1
2 edge2 edge3 edge4
3 edge5 edge6 edge7
4
5 edge8 edge9

Figure 2: Data captured by D4M in Julia

Implementation

There are some shared properties between Matlab and Julia, and will drive the
implementation of D4M in Julia. Since both are computational languages, they
chiefly work on numerical structures and values. Thus, instead of writing an
object oriented representation of D4M that overloads the native Julia sparse
matrix to handle D4M’s string values and operations, a wrapper is made to
augment the native sparse matrix. This allows the native string and number
interaction operation to be mostly intact when D4M is loaded. (Ex. the sum and
multiplication between a number and string shouldn’t be defined) Though the
possibilities of overloading mathematical operations to enable fluid interaction
between number and string data could be interesting, this will hold for further
studies after the core importation.

There are three driving factors in this implementation.

2

1. time

2. foundation

3. performance

First, the implementation has to be completed in a semester; simply put the
project has to be completed for the project. Secondly, the implementation has
to form a foundation, enough for me or future researchers to build upon this
implementation. Thirdly, the implementation has to be Julia. In this sense, the
implementation shouldn’t be a direct port from another language, but should
utilize and base off of Julia’s core style and functions.

From this point onwards, associative array will be exclusively referencing
the associative array in D4M, which includes edge information between the two
associated subsets.

Memory Structure

The associative array in D4M is implemented by building on top of the sparse
matrix. There were two potential styles of implementation: overloading the
sparse matrix into taking String agruments, or building a String wrapper that
maps sparse matrix numberic values. Julia does support overloading basic func-
tions and memory structures quite easily. However, to enable such overloading,
basic numeric and string joint operations would need to be overrided. Such
basic overloading could bleed into other packages and impact their functions.

Thus instead, the less intrusive implemenation is chosen.

Key Helper Functions

There are a few key sub function that is isolated from the operations of D4M.
They were not in the original implementation of D4M, but is deemed important
such that it should be isolated out. The isolation would allow future improve-
ment to augment D4M for clusters or other features

• Sorted Intersect : Calculate the intersect of two arrays with unique and
sorted elements.

• Sorted Union : Calculate the union of two arrays with unique and sorted
elements.

• Search Sorted Mapping : Calculate mapping from the first input sorted
array to the second input sorted array

• Condense : Eliminate empty rows and columns.

• Deep Condense : Eliminate empty rows, columns, and value mapping.

3

Sorted Intersect. This came to a surprise that this doesn’t exist in the
Julia general. Just like sortedsearch give performance benefit for searching on
a sorted array, sortedintersect does the same for intersect(X,Y). Set operations
which would gain performance boost on sorted arrays or collection like sorted
intersect could be an useful addition for Juila.

Sorted Union. This is similar to Sorted Intersect, it would iterate through
two arrays with sorted and unique elements. Unlike Sorted Intersect, Sorted
Union would traverse through both arrays, thus its performance dependent on
the longer of the pair of arrays instead of the shorter.

Search Sorted Mapping. This is to map between two arrays, which the first
sorted array is assume be a subset of the second sorted array. This helped after
the Union and Intersect is found and the mapping between the new assoc to the
older assoc needed to be found.

Condensing is the garbage collecting feature for D4M. They eliminate empty
row, column, and values mapped with D4M. These functions are isolated out
for benefit of future functions. Though some functions would benefit from doing
these gabarge collecting during the operation, having isolate functions to call to
manually improve data or for functions that can’t

Condense. This is a critical function in keeping the sparse matrix size
managable. It would eliminate empty rows and columns in the sparse matrix.
Though currently only the subreferencing (indexing) and multiply utilizes con-
dense. It is a simple enough function, but could be utilized by future functions
that is more complex.

Deep Condense. This is to manage the value mapping just as condense do
for row and column mapping. However, it does call condense and clear up the
row and column, so essentially this will remove all empty row, column, and
unused values.

Examples

There are three main folders of examples that are implemented.
These examples were implemented in Matlab for a class on the original D4M.

Their Julia counterpart is implemented in the D4M module.

Assoc Intro

Assoc Intro is a collection of example meant to demonstrate operations of Assoc.
This includes construction, indexing, and mathematical operations.

1. 01Setup : This setups for the introduction and demo the basic constructor
and write out.

2. 02subref : This showcases the equavalent syntax to the Matlab version
for indicing, however the Julia D4M does have Regex and row/column
elementwise indexing.

4

3. 03math : This showcases mathematical operations that D4M associative
array can utilize: element-wise divide, sum on 1 dimension, matrix multi-
ply and others.

4. 04advconstruct : This script tests construction of empty associative array
and mixed type associative array.

Parallel Database

Parallel Database is a collection of examples to test D4M with parallel Database.
Unfortunately, Julia binding to Accumulo isn’t completed yet. Thus this col-
lections of Julia script is implemented upto the point where the database is
included.

Matrix Performance

Matrix Performance is a collection of examples to test performance of D4M asso-
ciative array operations. This allows some basic comparsion between Julia and
Matlab native operations (like dense and sparse matrix) and D4M associative
array operations.

Result

There are two main result of this project. First a base D4M implementation
is completed in Github. And that the implementation has performed on par
or better than the matlab implementation. The Julia D4M module has been
implemented at https://github.com/achen12/D4M.jl.

Matrix Multiply

5

Intially, the Julia code performed a lot slower than the matlab, but after im-
proving the condensing process and implementing set operations, the Julia im-
plementation achieved performance faster than Matlab. Namely, by assuming
the input arrays are unqiue and sorted, the set operation doesn’t need to look
backward to check previous elements thus resulting in a linear computation
speed. These improvements were isolated out as helper functions and aided in
speeding up various other operations.

Matrix Add

Matrix add’s speed improvement process is similar to matrix multiply. However,
during the process a bug in Julia’s sparse matrix, in that set index is significantly
slower to addition. This could be due to the nature that both right hand side
and left hand side are sparse, but a more detailed explanation is needed.

%Broken Vers ion
. . .

ABA = spze ro s (n , n)
ABA[Arow , Acol] = At .A
ABA[Brow , Bcol] += Bt .A
. . .

%Fixed Vers ion
. . .

ABA = spze ro s (n , n)
ABA[Arow , Acol] += At .A %Change
ABA[Brow , Bcol] += Bt .A
. . .

6

Parallelism?

Why isn’t D4M parallelized?
It could be, but not the part that was focused on. In this sense, the majority

of the computation cost for matrix add and multiply lies in the sparse matrix
computational cost. The cost of doing the mathematical operation on the sparse
matrix and condensing the sparse matrix represent most of the computational
cost.

The sorted set operations has been is quite optimized. The cost of comput-
ing these operation takes less than the cost of relocating the memory between
processes. The example parallelization is done as a test.

Aref = @spawn searchsortedmapping (ABintersect , At . c o l)
Bref = @spawn searchsortedmapping (ABintersect , Bt . row)
AintMap = f e t c h (Aref)
BintMap = f e t c h (Bref)

But the worst case computational cost for all of the sorted operation is the
total count of the elements in each input array. Thus the computation cost is
proportational to the memory rellocation cost. In fact the computation is trival
compare to the memory rellocation of the array. Thus parallelization would
only make sense in two scenarios.

First, the parallization lies in Sparse Matrix. Since the majority of the
computation is in the sparse matrix and is not linear with the entries, parallizing
the sparse matrix would be very benefitial. But of course this is very difficult.
There seems to have some success with Parallel Sparse Matrix module in Julia,
but it doesn’t seem to be stable. And thus this module is not included as a
dependency in Julia D4M. Perhaps one day when the module stablizes and is
implemented widely as one of the Julia core modules, D4M could opt in to the
module.

Second, the memory is parallized. In essence, associative array is imple-
mented as a block matrix implementation. Thus the memeory has be paritioned,
and each of the set operations would be done on the correlated core that has
the paritioned memory. This type of implementation might be neccesary for
the matrix size that is overwhelming large for the native Julia to capture with
normal array. But for the demo in Matrix Performance, this is not necessary
yet.

Contribution

This project successfully complete these items:

• Implemented base functions of D4M in Julia on par with the performance
in Matlab.

• Completed Documentation for these functions.

• Completed Examples for these functions.

7

Future Work

• Expand D4M functions

• Accumulo binding for Julia

• D4M interaction with Native Julia

There are plenty of potential work for Julia D4M. First, not all of the functions
of D4M has been implemented. There are a few more complex functions that
can be implemented, which would match the Julia implementation with the
matlab in terms of functionality. Second, a lot of work on D4M also utilizes Ac-
cumulo. And thus a Accumulo binding for Julia would be extremely useful for
past D4M users to migrate to Julia version of D4M, without changing the data
storage and memory setup. Third, there could be potential for mix matching
operations between Julia native data structures such as dictionary or matrices,
to enable intermixing operations. This can be done, because D4M can properly
represent these native data structures in D4M associative array and allow po-
tential intermixing with other database interface modules easily through Julia’s
native data representations.

8

