
DEEP LEARNING AND GPU
PARALLELIZATION IN JULIA

2015.10.28 18.337 Guest Lecture
Chiyuan Zhang

CSAIL, MIT

MACHINE LEARNING
AND DEEP LEARNING

A very brief introduction

What is Machine Learning?

■ Typical machine learning example: email spam filtering

What is Machine Learning?

■ Traditional Rule-based spam filtering:
for word in email

if word ∈ [“buy”, “$$$”, “100% free”]
return :spam

end
end
return :good

■ Issues
– Growing list of spam-triggering keywords
– Longer word-sequences needed for higher accuracy, and rules could become very

complicated and hard to maintain
– …

What is Machine Learning?

■ Machine learning: training a model from examples
– Input 1: training data with labels, including spam email examples and good email

examples, marked by human labeler as “spam” or “good”
– Input 2: a parametric (usually probabilistic) model, describing a function

𝑓": 𝒳	 → ±1
where 𝒳 is the space of all emails, +1 indicate good emails, and -1 indicate spam
emails. 𝜃 is the parameters of the model, that is to be decided.

– Input 3: a cost function: 𝐶(𝑦, 𝑦.), measuring the cost of predicting as 𝑦. when the
true label is 𝑦.

– Training: essentially solving

min
"∈4

1
𝑁6𝐶 𝑦7, 𝑓" 𝑥7

9

7:;

Example: the Naïve Bayes Model
𝑓" 𝑥 = argmaxA∈ ±; ℙ" 𝑦 𝑥

= argmaxA∈ ±; ℙ" 𝑥 𝑦 ℙ" 𝑦

= argmaxA∈{±;}ℙ"(𝑦)Eℙ" 𝑥F 𝑦
G

F:;

■ Each 𝑥7 is the count of a specific word (e.g. “buy”) in our vocabulary

■ The parameters 𝜃 encodes all the conditional probabilities, e.g. ℙ" 𝑏𝑢𝑦 spam =
0.1, ℙ" 𝑏𝑢𝑦 good = 0.001.

■ The optimal 𝜃 is “learned” automatically from the examples in the training set.

■ In practice, more complicated models can be built and used.

■ Statistical and computational learning theory: learnability and performance
gurantee.

Machine Learning in the Wild

■ Computer Vision
– Image classification: face recognition, object category identification
– Image segmentation: find and locate objects, and carve out their boundaries
– Scene understanding: high-level semantic information extraction
– Image captioning: summarize an image with a sentence

Andrej Karpathy and Li Fei-Fei. Deep Visual-Semantic Alignments for Generating Image Descriptions. CVPR 2015.

Machine Learning in the Wild

■ Speech Recognition
– Input: audio signals; output: text transcription
– Apple Siri, Google Now, Microsoft Cortana

■ Natural Language Processing
– Semantic parsing: output is syntax trees
– Machine translation: output is a sentence in another language
– Sentiment analysis: output “positive” or “negative”

■ Artificial Intelligence
– Google deepmind: reinforcement learning for playing video games

see Fig. 3, Supplementary Discussion and Extended Data Table 2). In
additional simulations (see Supplementary Discussion and Extended
Data Tables 3 and 4), we demonstrate the importance of the individual
core components of the DQN agent—the replay memory, separate target
Q-network and deep convolutional network architecture—by disabling
them and demonstrating the detrimental effects on performance.

We next examined the representations learned by DQN that under-
pinned the successful performance of the agent in the context of the game
Space Invaders (see Supplementary Video 1 for a demonstration of the
performance of DQN), by using a technique developed for the visual-
ization of high-dimensional data called ‘t-SNE’25 (Fig. 4). As expected,
the t-SNE algorithm tends to map the DQN representation of percep-
tually similar states to nearby points. Interestingly, we also found instances
in which the t-SNE algorithm generated similar embeddings for DQN
representations of states that are close in terms of expected reward but

perceptually dissimilar (Fig. 4, bottom right, top left and middle), con-
sistent with the notion that the network is able to learn representations
that support adaptive behaviour from high-dimensional sensory inputs.
Furthermore, we also show that the representations learned by DQN
are able to generalize to data generated from policies other than its
own—in simulations where we presented as input to the network game
states experienced during human and agent play, recorded the repre-
sentations of the last hidden layer, and visualized the embeddings gen-
erated by the t-SNE algorithm (Extended Data Fig. 1 and Supplementary
Discussion). Extended Data Fig. 2 provides an additional illustration of
how the representations learned by DQN allow it to accurately predict
state and action values.

It is worth noting that the games in which DQN excels are extremely
varied in their nature, from side-scrolling shooters (River Raid) to box-
ing games (Boxing) and three-dimensional car-racing games (Enduro).

Montezuma's Revenge
Private Eye

Gravitar
Frostbite
Asteroids

Ms. Pac-Man
Bowling

Double Dunk
Seaquest

Venture
Alien

Amidar

River Raid
Bank Heist

Zaxxon

Centipede
Chopper Command

Wizard of Wor
Battle Zone

Asterix
H.E.R.O.

Q*bert
Ice Hockey

Up and Down
Fishing Derby

Enduro
Time Pilot

Freeway
Kung-Fu Master

Tutankham
Beam Rider

Space Invaders
Pong

James Bond
Tennis

Kangaroo
Road Runner

Assault
Krull

Name This Game
Demon Attack

Gopher
Crazy Climber

Atlantis
Robotank

Star Gunner
Breakout

Boxing
Video Pinball

At human-level or above

Below human-level

0 100 200 300 400 4,500%500 1,000600

Best linear learner

DQN

Figure 3 | Comparison of the DQN agent with the best reinforcement
learning methods15 in the literature. The performance of DQN is normalized
with respect to a professional human games tester (that is, 100% level) and
random play (that is, 0% level). Note that the normalized performance of DQN,
expressed as a percentage, is calculated as: 100 3 (DQN score 2 random play
score)/(human score 2 random play score). It can be seen that DQN

outperforms competing methods (also see Extended Data Table 2) in almost all
the games, and performs at a level that is broadly comparable with or superior
to a professional human games tester (that is, operationalized as a level of
75% or above) in the majority of games. Audio output was disabled for both
human players and agents. Error bars indicate s.d. across the 30 evaluation
episodes, starting with different initial conditions.

LETTER RESEARCH

2 6 F E B R U A R Y 2 0 1 5 | V O L 5 1 8 | N A T U R E | 5 3 1

Macmillan Publishers Limited. All rights reserved©2015

Google Deep Mind. Human-level control through deep reinforcement learning. Nature, Feb. 2015.

What is Deep Learning then?
■ Designing a good model is difficult

■ Recall the Naïve Bayes model
– The prediction is parameterized by the probability of each word conditioned on the

document being a spam or a good email.
– The count of words in a (fixed) vocabulary is what we are looking at, those are called

features or representations of the input data.
– Two representations could contain the same information, but still be “good” or

“bad”, for a specific task.

■ Example:
representations of a
number

What is Deep Learning then?

■ Depending on the quality of the features, the learning problem might become easy
or difficult.

■ What features to look at when the input are complicated or unintuitive?
– E.g. for image input, looking at the raw pixels directly is usually not very helpful

■ Feature designing / engineering used to be a very important part of machine
learning applications.

– SIFT in computer vision
– MFCC in speech recognition

■ Deep Learning: learning both the representations and the model parameters
automatically and jointly from the data.

– Recently become possible with huge amount of data (credit: internet, mobile
devices, Mechanic Turk, …) and highly efficient computing devices (GPUs, ...)

DEEP LEARNING AND
GPU PARALLELIZATION

In Julia… a tiny introduction

GPUs vs. CPUs

CPUs GPUs

Typical number
of cores

Dozens of Thousands of

Features General purpose
computing

“General” purpose
computing

Parallelization Arbitrarily complicated
scheduling of different
processes and threads
performing heteogeneous
tasks

All cores run the
same “kernel”
function, without or
with very limited
communication or
sharing.

Example One thread classifying
emails and one thread
displaying them in a GPU

Computing max(X, 0),
each core taking care
of 1 element in the
matrix X.

Several Facts

■ Many machine learning and deep learning algorithms fits nicely with GPU
parallilization models: simple logic but massive parallel computation.

■ Training time large deep neural networks:
– From ∞ (or probably finite, but takes years, nobody was able to do it in pre-GPU age)
– To weeks or even days, with optimally designed models, computation kernels, IO,

and multi-GPU parallizations

■ Julia is primarily designed for CPU parallelization and distributed computing, but
GPU computing in Julia is gradually getting there

– https://github.com/JuliaGPU

Deep Learning in Julia

■ Now there are several packages available in Julia with GPU supports
– Mocha.jl: https://github.com/pluskid/Mocha.jl

Currently the most feature complete one. Design and architecture borrowed from
the Caffe deep learning library.

– MXNet.jl: https://github.com/dmlc/MXNet.jl
A successor of Mocha.jl. Different design, with a language-agnostic C++ backend
dmlc/libmxnet. Relatively new but very promising, with flexible symbolic API and
efficient multi-GPU training support.

– Knet.jl: https://github.com/denizyuret/Knet.jl
Experimental symbolic neural network building script compilation.

IMAGE CLASSIFICATION
IN JULIA

A tutorial with MXNet.jl

Hello World: Handwritten Digits

■ MNIST handwritten digit dataset
– http://yann.lecun.com/exdb/mnist/

■ Each digit is a 28-by-28 grayscale image

■ 10 target classes: 0, 1, …, 9

■ 60,000 training images, and 10,000 test
images

■ Considered as a fairly easy task nowdays, the
“sanity-check” task for many machine learning
algorithms

A Convolutional Neural Network: LeNet

■ A classical model invented by Yann LeCun, called the LeNet.

■ Chain of convolution and pooling operations, followed by densely connected neural
network layers.

INPUT
32x32

Convolutions SubsamplingConvolutions

C1: feature maps
6@28x28

Subsampling

S2: f. maps
6@14x14

S4: f. maps 16@5x5
C5: layer
120

C3: f. maps 16@10x10

F6: layer
 84

Full connection
Full connection

Gaussian connections

OUTPUT
 10

LeCun, Yann, et al. "Gradient-based learning applied to document recognition." Proceedings of the IEEE 86.11 (1998): 2278-2324.

What is Convolution and Pooling?

■ Convolution:
– Basically pattern matching across spatial

locations, but…
– The patterns (filters) are not designed a

priori, but learned from the data and task.

■ Pooling:
– Accumulating local statisitcs of filter

responses from the convolution layer.
– Leads to local spatial invariance for the

learned patterns.

Image source: http://inspirehep.net/record/1252539

Th
e

Le
N

et
in

 M
XN

et
.jl

Loading the Data and Training the
Model (Stochastic Gradient Descent)

A More Interesting Example: Imagenet

■ The Imagenet dataset: http://www.image-net.org/
– 14,197,122 full-resolution images, 21,841 target classes
– Challenges every year (Imagenet Large Scale Visual Recognition Challenge, ILSVRC)
– A smaller subset with ~1,000,000 images and 1,000 categories is typically used

People started to use deep
convolutional neural networks

The Google “Inception” Model

■ Winner of ILSVRC 2014, 27 layers, ~7 million parameters

■ With a highly optimized library, on 4 GPU cards, training a similar model takes 8.5
days (see http://mxnet.readthedocs.org/en/latest/tutorial/imagenet_full.html)

Christian Szegedy, et. al. Going Deeper with Convolutions. arXiv:1409.4842 [cs.CV].

Image Classification with a Pre-trained
Model
■ Because we cannot have a 8.5-day long class…

■ We will show a demo on using pre-trained model to do image classification

■ The IJulia Notebook is at:
http://nbviewer.ipython.org/github/dmlc/MXNet.jl/blob/master/examples/imagene
t/ijulia-pretrained-predict/Prediction%20with%20Pre-trained%20Model.ipynb

GPU Programming in
Julia: Status
■ High-level programming APIs
– CUFFT.jl, CUBLAS.jl, CLBLAS.jl, CUDNN.jl,

CUSPARSE.jl, etc…

■ Intermediate-level programming APIs
– CUDArt.jl, OpenCL.jl
– Write kernel functions in C++, but high-level

program logic in Julia

■ Low-level programming APIs
– Using Julia FFI, to call into libcudart.so etc.

ccall((:cuLaunchKernel, “libcuda”),
(Ptr{Void}, …), kernel_hdr, gx, gy, ...)

