Parallel Implementation of Nudged Elastic Band Method
6.338 Final Project

Anubhav Sinha

December 14, 2011
Methods in computational chemistry give potential energy surfaces (PES).

Purpose: find the transition state energy barrier and the intrinsic reaction coordinate or minimum energy path (MEP) between two stable configurations.
Determine the true MEP.

- The path q has endpoints q_i and q_f that are local minima of the PES.
- The path is parametrized by some variable s that goes from 0 to 1.
- At every point in the path, $\frac{dq}{ds}$ is parallel to the gradient of the PES.
- The MEP passes through at least one saddle point since both q_i and q_f are minima.
Very Computationally Intensive

- Relaxed PES Scan: fix internal coordinate or linear combination of internal coordinates (i.e. bond lengths), and optimize other coordinates.
- Hypersphere Search: locate all energy minima on hypersphere with dimensionality same as coordinate space and given radius; trace minima as a function of the hypersphere radius.

Less Computationally Intensive

- Eigenvector Following Method: compute Hessian matrix and gradient, take steps in all directions of eigenvectors except the one associated with the smallest eigenvector.
- Gradient Extremal Following Method: follow Gradient Extremal Path

Better Methods

- String Method
- Plain Elastic Band
- Nudged Elastic Band
Nudged Elastic Band Method

NEB

Chain of States Method: \(S^{\text{NEB}}(Q_i, \ldots, Q_f) \).

- Come up with initial interpolation with \(N \) images between fixed endpoints \(Q_i \) and \(Q_f \).

- Connect adjacent images with spring force:
 \[
 F^S_i = k(Q_{i+1} - Q_i) - k(Q_i - Q_{i-1}).
 \]

- Compute force due to potential:
 \[
 F^V_i = -\nabla V(Q_i)
 \]

- Compute modified unit “tangent” \(\vec{\tau} \)

- Compute the force used
 \[
 F_i = \left(F^V_i - (F^V_i \cdot \vec{\tau}) \vec{\tau} \right) + \left((F^S_i \cdot \vec{\tau}) \vec{\tau} \right) = F^V_i \perp + F^S_i \parallel
 \]

- Numerical integration using Steepest Descent;
 \[
 Q_i = Q_i + \alpha \cdot F_i
 \]
Unit Tangent

\[\vec{\tau} = \begin{cases} \vec{\tau}^+ \Delta V^{\text{MAX}} + \vec{\tau}^- \Delta V^{\text{MIN}} & V_{i+1} > V_{i-1} \\ \vec{\tau}^+ \Delta V^{\text{MIN}} + \vec{\tau}^- \Delta V^{\text{MAX}} & V_{i+1} < V_{i-1} \end{cases} \]

where
\[\Delta V^{\text{MAX}} = \max(|V_{i+1} - V_i|, |V_{i-1} - V_i|) \]
\[\Delta V^{\text{MIN}} = \min(|V_{i+1} - V_i|, |V_{i-1} - V_i|) \]

where \(\vec{\tau} \) is renormalized.

Vector Components

- Plain Elastic Band: \(\vec{F}_i = \vec{F}_i^V + \vec{F}_i^S \)
- Nudged Elastic Band \(\vec{F}_i = |\vec{F}_i^V|_\perp + |\vec{F}_i^S|_\parallel \)

Fix this by “Nudging”; vector projections decouple dynamics of point distribution along path from dynamics of path itself.
Advantages and Disadvantages of NEB

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Converges to MEP</td>
<td>Need sufficient number of images along path</td>
</tr>
<tr>
<td>Does not require second derivative information</td>
<td>Multiple MEPs may exist</td>
</tr>
<tr>
<td>Embarrassingly parallel</td>
<td>Slow convergence</td>
</tr>
</tbody>
</table>
Implementation

- Using MPI/C++ on the Evolution Cluster
 - 60 nodes
 - 2 x 2-core 2.66 GHz Intel Xeon with 6 GB RAM/node
- Number of processors used and number of images/per processor are variable
- Serial reference implementation
Parallelization Method

- **Simple Parallelization:** put one image per node
 - Slower for smaller problems with simpler potentials—MPI Send and MPI Recv are very slow operations.
 - Better for larger, more complex problems.
 - Requires lots of processors.

- **More Involved Parallelization:** put several images per node so that some processes can communicate directly via memory.
 - Better for simpler potentials; more complex potentials are better served with minimizing number of images per node.
Outline of Code

- Initialize starting configuration; set up images on processors.
- Repeatedly calculate NEB forces and numerically integrate until convergence; output image data.
 - MPI Send/Recv coordinates of neighboring images to calculate Spring Force.
 - Calculate potential forces and compute vector projections.
 - Numerically integrate and output data.
 - MPI Reduce to determine convergence.
Test Systems

- Karplus PES
- Wolfe-Quapp PES
- Muller-Brown PES

We use these because:

- Canonical simple 2D surfaces
- Easy to visualize
Karplus PES
Karplus MEP
Muller-Brown PES
Muller-Brown MEP

Wolfe-Quapp PES
Wolfe-Quapp MEPs
Wolfe-Quapp MEPs

http://web.mit.edu/anusinha/www/6.338/AC_1.gif
Wolfe-Quapp MEPs

http://web.mit.edu/anusinha/www/6.338/AC_2.gif
Accuracy of Convergence

Sample Potential vs Arclength plot for Wolfe-Quapp potential, long path from A to C through saddle point c. All the potential vs arclength paths that NEB finds come very close to their corresponding Newton-Raphson paths.
Analytic Potentials

Simple potential energy surfaces used

- Karplus:
 \[V(x, y) = 0.6(x^2 + y^2)^2 + xy - 9(e^{-(x-3)^2-y^2} + e^{-(x+3)^2-y^2}) \]

- Muller-Brown:
 \[V(x, y) = \sum_{i=0}^{i=3} A_i e^{a_i(x-x_i^0)^2+b_i(x-x_i^0)(y-y_i^0)+c_i(y-y_i^0)^2} \]

- Wolfe-Quapp:
 \[V(x, y) = x^4 + y^4 - 2x^2 - 4y^2 + xy + 0.3x + 0.1y \]

Nonrealistic use case; functions evaluate very quickly so serial code runs faster, since there are no communications at all.
Simple Runtime

24 images used on Muller-Brown Potential.

Performance vs Number of Processors

- Time (seconds)
- Number of Processors

- No Extra Load
This is an embarrassingly parallel problem. Why is it so slow?

- The potentials are simple; direct memory accesses are much faster than message passing between multiple separate nodes.
- The peak at two processors is unclear; could be because of laggy node.
- Settles at value with passing; the distributedness of the passing doesn’t matter. Let’s add a delay to the potential energy calls to simulate a realistic test case.
Realistic Use Case

We add a delay to simulate the use of this program on a real system.
Implemented parallelized version of NEB algorithm.

- Tested for accuracy of method on canonical 2D PES.
- Runtime decreases on realistic test cases.
- Have easily modifiable framework for testing variants of chain-of-states methods.
Future Work

- More complex potential surfaces; code is written is written for \(n \)-dimensional potentials.
 - First step: Lennard-Jones potential:
 \[
 V_{LJ} = \epsilon \left[\left(\frac{r_m}{r} \right)^{12} - 2 \left(\frac{r_m}{r} \right)^6 \right]
 \]
 - Interface with molecular dynamics software

- Test out variants of NEB method
 - Climbing Image NEB
 - Doubly Nudged Elastic Band
 - Related: String method

- Better optimization method—Steepest Descent is simple, but slow. Conjugate Gradient, Fast Inertial Relaxation Engine, L-BGFS are faster.

- Better approximations than simple linear interpolation; \(\nabla V \approx H \) at the endpoints.
Image Sources

I’d like to thank Jeff Bezanson, and Prof. Troy Van Voorhis and Prof. Alan Edelman.

Questions?