
1

AMANDA PETERS

MIT 18.337
MAY 13, 2009

I. INTRODUCTION

OOPERATION has been a highly debated topic in evolutionary biology for years. Its existence

seems contradictory with Darwin’s theories of natural selection. Natural selection dictates

that the fittest will survive the competition between reproducing individuals and seems to

predict the emergence of selfish strategies over altruistic ones. Evolutionary theory suggests

that behaviors will only be favored for selection if they increase the fitness of the individual,

which is often in contradiction with the group. This would lead to selection for selfish

behaviors benefiting the individual and the disappearance of the other behaviors over time.

So why did cooperation evolve? From the point of view of natural selection, one would think

the optimal strategy is to dominate opponents and eliminate opposition. Individual selection

seems to dictate selection of strategies that support this notion of strong control. However, this

is not what we see in practice in biology. There are many examples of where cooperative

behavior emerges from interactions of humans to viruses to bacteria, leaving evolutionary

biologists to debate the evolution of these behaviors.

What we see is that conflicts between individuals are often resolved by trials of strength

resulting in the weaker animal surrendering goods without suffering serious injury or death.

Why does the dominant animal not eliminate or strongly punish its opponent? Natural

selection would seem to dictate the use of maximally effective weapons or fighting styles for a

“total war”. What emerges, however, is a type of cooperative behavior or ‘limited war’ with

inefficient weapons that rarely inflicts serious injury. An example from nature provided by

Maynard Smith and Price is the way snake species often settle intraspecific fights through

wrestling matches without use of their deadly fangs. Previously, this was explained with the

idea of group selection, meaning that the actions evolved for the good of the species. [2] The

idea of group selection falls short though. When looking at the individual’s point of view, one

PARALLEL MODEL OF EVOLUTIONARY GAME

DYNAMICS

C

2

would select what is optimal for that individual. If there is incentive for the individual to defect

from group strategy, it poses a destabilizing force to this theory and raises the question of why

we see the emergence of ‘limited war’ strategies.

Furthermore, natural selection would seem to support punishing of weaker opponents. As

discussed in Maynard Smith and Price’s paper, the stable ‘limited war’ strategy that emerge

contain elements of retaliation and are therefore similar to Tit-for-Tat strategies. As shown in

Axelrod’s Prisoner’s Dilemma tournaments, TFT strategies lead to the emergence of

cooperation. [3] If the threat of reciprocation is a key factor in the evolution of cooperation, what

would happen if that was taken one step further? Could costly punishment be a rational

strategy to help promote cooperation? If so, is it to the benefit of the individual?

A computational model of the interactions of individuals adopting the various strategies will

help facilitate an investigation of these questions. Maynard Smith and Price laid out the

foundations for a model that can be expanded to test other strategies and can be expanded to

explain further biological questions. This paper will investigate will focus on writing a parallel

program to run the simulations that will provide a firm base for future research. In the first

section, I will discuss the model in more detail. I then explain the approach I took in developing

the code, and then will discuss both methods of parallelism. I will first explain the GPU

architecture and the methods to parallelize the code via CUDA on the GPU. I will then describe

the IBM Blue Gene architecture and the subsequent methods to port the code to C/MPI. Finally,

I will discuss the results from the parallelization and the demonstrated 97% time reduction

using the GPU and the 99% time reduction using the Blue Gene implementation. Finally, I will

discuss the potential for scaling the problem up and the future research directions this opens

up.

II. OVERVIEW OF THE MODEL

N traditional evolutionary studies, biologists relied on the idea of group selection to explain

the existence of various traits. Under this idea, phenotypes were favored that would

benefit the fitness of the overall group. Evolutionary adaptations were seen to come about for

the better of the species. It wasn’t until the late 1960s and early 1970s that this idea was really

questioned. Maynard Smith and Price helped to establish the idea of individual selection being

I

3

a guiding principle in evolutionary biology. In their 1973 paper “The Logic of Animal Conflict”,

they put forth the following theorem:

“Limited war” strategies are evolutionarily stable strategies

What is an ESS?

While the above theorem will be the focus of this discussion, the idea of evolutionarily stable

strategies described in this paper play a fundamental role. When looking at the field of

evolutionary biology, it is first important to understand the field of play. In this case, the

payoffs involved with the game are biological fitness and hence the ability to reproduce as well

as the ability to fight off invading strategies. In traditional game theory, it is generally

considered common knowledge that players are aware of the game, attempting to maximize

payoffs, and predicting the other players’ moves. These factors contribute to the Nash

Equilibrium solution which is a strategy with which the player has no incentive to deviate. In

evolutionary games, however, the players do not choose their strategies, they inherit them. The

player may not even be aware of his/her strategy or even of the overall game itself. The payoffs

to the game are generally tied to the biological fitness of the individuals. This is a key point as

natural selection illustrates the connection between fitness and species survival. New strategies

are introduced via random mutations and the solution necessary is a strategy that is resistant.

[4] This leads to the need for “evolutionarily stable strategies” or ESS described by Maynard

Smith and Price. These are strategies that “if most of the members of a population adopt it,

there are no ‘mutant’ strategy that would give higher reproductive fitness.” [2] ESS is a

refinement of the NE for the context of evolutionary games.

In order to demonstrate a strategy is ESS, one must show that in a population that has adopted

primarily that strategy there is no incentive to deviate to another. This will lead to natural

selection weeding out the undesired strategies. On the other hand if there is incentive to

deviate, instability will arise as the population shifts to express the deviant phenotype.

The Computer Model and Simulation Test

Maynard Smith and Price were interested in investigating animal behavior. As mentioned

above, they focused on the use of ‘limited war’ tactics vs. ‘total war’ tactics. When engaging in

conflict with one another, one might intuitively expect to see ‘total war’ tactics that have a

higher likelihood of ensuring victory for the animal. In practice, however, this is not the case.

4

Before this paper, the idea of group selection had been used to explain this paradox. They

instead posed the following theorem as an explanation:

“Limited war” strategies are evolutionarily stable strategies for both the species and the

individual

A computer model and simulation test were used in order to investigate the role individual

selection has on ‘limited war’ behavior. In the model, five strategies were outlined and given to

the contestants. The ‘Hawk’ strategy was the only ‘total war’ meaning it always plays the

destructive weapons (D). Of the ‘limited war’ strategies ‘Mouse’ never plays D and retreats

immediately when D is played against it, ‘Bully’ will play D on the first move and in response

to conventional weapons (C) but will play C in response to D, and both the ‘Retaliator’ and

‘Prober-Retaliator’ escalate in response to an attack while ‘Prober-Retaliator’ will probe by

playing D with a low probability. By looking at the outcomes, one can see whether the ‘limited’

or ‘total’ war strategies were favored. The strategy of the contestant and its opponent were the

only variables. Set probabilities were used to describe the likelihood of serious injury, initial

move, and retaliation. Payoffs were calculated as follows: winning+=60, receiving serious injury

+= -100, bonus for short game with no injury += 20 and each non-serious injury += -2. [2]

III. APPLICATION

HE first step was to write a serial version of the application. The goal of the code was to

provide framework for future game theory analysis, so I began by understanding the model

put forth by Maynard Smith and Price and writing an application to capture this model. My

goal is to enable analysis of more behavioral strategies and variables values, but in order to get

there I first needed to replicate the results put forth in their paper.

I set up my program with four key concepts: the game, a round, strategy, and player. A game

would be defined as the conflict between two players. Each game would have a set number of

rounds and the payoffs across these rounds would be averaged to show the results of the

interaction between players. Each player would be assigned a behavioral strategy. For this, I

used the five examples described in the previous section. The goal of the application is to

analyze the conflict between every behavioral strategy with every other behavioral strategy to

determine if a dominant strategy arises. To this end, the call of the game play function was

T

5

iterated over by every pairing of strategies. The game play function then simulated that game

through by calling the function to simulate each round. In each round, turn style play was used

with a randomized first player. The results were all fed back to the main function.

The final results as will be discussed in a later section were consistent with the findings in the

paper [2].

Parallel version 1: CUDA GPU

Architecture

The first step in this project was to complete background research on both GPUs and the CUDA
programming language. Although I have had experience programming in parallel
environments, this has been primarily with MPI based codes. I was completely unfamiliar with

the GPU architecture and the accompanying programming model. By reading the manuals
NVIDIA provides, I was able to get a strong understanding of the underlying hardware
architecture, memory model, and therefore the challenges of its programming model. In order

to begin programming for GPUs, it seems important to understand both the interaction between
the CPU and GPU as well as the GPU grid/block setup. I initially needed to understand the

memory model. The image below shows the CUDA Memory Model:

6

NVIDIA CUDA Memory Model [5]

The setup is such that an application begins running on the CPU (i.e. the host) and sets up
necessary data. This data can then be copied into memory onto the device and kernels will be

executed in blocks of threads. These threads have several levels of memory as shown above.
Understanding this setup allows the programmer to move data between the host and device
efficiently. It is clear that many of the bottlenecks encountered in parallel codes on these

systems will be tied closely to inefficient data movement. Anytime the GPU needs to access
global memory, the program will be significantly slowed down. By having a firm grasp of the
memory model, the programmer can optimize data access and maximize overlap of the

communication and computation.

Aside from understanding how to get data to the GPU, it was important to learn about the

CUDA programming model. A strong advantage of the GPU architecture is the ability to
leverage a high number of threads for the application. The programming model is such that the
host will execute a number of kernel invocations to the device. These kernels will be executed

as a batch of threads organized as a grid of thread blocks as shown below.

7

Thread Batching [5]

In the parallelization of my application, I leveraged this setup to have each thread compute the
payoff output for one game at a time. This allowed up to 512 games to be simultaneously
simulated in each grid. This will be discussed further in the following section. [5]

Parallelization

O prepare the code to run on the GPU it first needed to be ported from C to CUDA. This was

fairly straightforward as CUDA is a C based language. The tricky part was identifying

functions for parallelization and setting up the appropriate kernels. I decided that the best

method would be to run pre-and post-processing steps on the CPU and offload the simulations

of each interaction. As the rounds themselves could be calculated with no shared information

between them, the code is considered embarrassingly parallel. This allowed me to set the code

up so that grids were spawned that would allow each round to be handled by a separate thread

with no dependence on other calculations. When working with CUDA, the biggest potential

bottleneck is the data transfer. Anytime the device needs to return to the CPU to access

memory, you face a large potential time sink. It is therefore important to optimize the data

usage and especially the data movement. Future potential options for data optimization will be

discussed in the final section of this paper.

T

8

The setup of my CUDA code was to define a global kernel that would be called on the device

for each game. This would provide the structure for splitting the round computation across the

threads. The code sample below shows this kernel:

__global__ void gameGPU(int player1, int player2, float* d_payoff1, float* d_payoff2,float* rand_si, int

max_rounds){

 //Thread index

 const int tid=blockDim.x * blockIdx.x + threadIdx.x;

 //Total number of threads in grid

 const int THREAD_N = blockDim.x * gridDim.x;

 int max_moves=500;

 for (int round = tid; round < max_rounds; round += THREAD_N)

 {

 play_round(player1, player2, d_payoff1[round], d_payoff2[round], rand_si[round],max_moves);

 }

}

You can see that this allows no more than the maximal number of rounds to be computed but at

the same time offloads them evenly to the threads. The function would then call another inlined

kernel on the GPU that would play out each round. Therefore each thread would calculate each

rounds play but running through a mock game between two players with specified strategies

and return the payoff. At the end of all the rounds, the payoff array would hold the payoff

values for each player in each round and would then be copied back to the host for post

processing. Care was taken in coding to keep most of the data in local memory for each thread.

The only major call to global memory was to return the payoff results for that thread. As this is

the data that will need to be copied back to the host at the end of the parallel section, this setup

seemed ideal. As will be discussed later, this could be further optimized by interlacing the post

processing with the next set of games running on the device or else having one thread calculate

the average while on the device. This would optimize the amount of data transfer by only

copying back to the host the average value instead of the entire payoff array. Future tests

would need to be made to determine the optimal setup. It will likely have a strong dependence

on the number of rounds played per game and number of games played.

9

IV. PARALLEL VERSION 2: C/MPI ON IBM BLUE GENE

Architecture

The system used in this portion of the study is the IBM Blue Gene\L supercomputer. [6] The

architecture for these systems is based on low cost embedded PowerPC technology. Some of

the architectural features are relevant for this study, so I will briefly summarize some of the key

components in this section.

BG/L is a massively parallel supercomputer. This system uses a distributed memory,

Message-passing programming model. The basic building block is a custom system-on-a-chip

(SoC) that integrates processors, memory, and communications. The chip contains two

standard 32-bit embedded PowerPC 440 cores that run at a frequency of 700MHz with the

addition of two floating-point units (FPU). Each core can perform four floating point operations

per cycle resulting in a theoretical peak performance of 5.6 Gflops/chip. The chip constitutes the

compute node. Two compute nodes attached to a processor card alongside the memory

constitute the compute card. In the case of BG/L you can have either 1GB of RAM per compute

node or 512 MB of RAM per compute node. In addition to the compute nodes, the system

contains a number of I/O nodes. These are physically very similar to the compute nodes but

have an integrated Ethernet enabled for communication with the external file systems. The I/O

cards and compute cards are then plugged into node cards. A rack holds 32 node cards, or 1024

compute nodes. The largest system is currently at Lawrence Livermore and consists of 104

racks for a total of 106,496 compute nodes. [6]

The utilization of SoC technology allows a dense packaging demonstrated below in Figure 1.

10

BG/PBG/P

2.8/5.6 GF/s
4 MB

2 processors

2 chips, 1x2x1

5.6/11.2 GF/s
1.0 GB

(32 chips 4x4x2)
16 compute, 0-2 IO cards

90/180 GF/s
16 GB

32 node cards

2.8/5.6 TF/s
512 GB

180/360 TF/s
32 TB

(For the original 64 rack
system)

Rack

System

Node card

Compute card

Chip

Blue Gene/LBlue Gene/L

Figure 1. The packaging hierarchy of Blue Gene/L supercomputer

The nodes are connected by four highly optimized networks: a three-dimensional torus, global

collective network, control system network, and Gigabit Ethernet networks. The majority of

messaging is conducted via the torus network which supports low-latency, high bandwidth

point to point messaging. For more information regarding the networks refer to [7]

As scalability is essential to the following parallelization discussion, it is necessary to get a high-

level understanding of the system software architecture. This is presented in Figure 2. below.

Figure 2. Overview of System Software

11

The main point is that the computational core is partition into logical processing sets (psets).

Each of these contains one I/O node running Linux and 64 compute nodes running the custom

BLRTS kernel. Access to the computational core is only achieved via two Ethernet networks for

I/O and low level management.

Parallelization

One of the key advantages to this code was that it has no I/O and is strongly computationally

bound. The only overhead introduced would be the communication between nodes which gave

this application strong parallel potential. As mentioned earlier, the code itself is embarrassingly

parallel. The setup of this code was such that small units of computation were conducted over a

number of rounds for each game in the sequence. My job was made a bit easier here as the

calculation for each base round only depended on information calculated within that round.

Therefore if all of the information for that game resided on each node, it could calculate the

payoffs for that round independently and in parallel. The only catch was then at the end of

each game, all of the data across the nodes would need to be updated to get the payoffs

collected for all rounds.

As I had determined that parallelization could occur across the rounds in the game, I then

needed to define which scheme I would use. In general, there are two main methods employed

to parallelize code: Master/Worker and Static Partitioning/Distributed Algorithm. For

embarrassingly parallel codes, the most popular method is Master/Worker. In this case, one

node acts as the ‘master’ and is generally responsible for all I/O functions as well as distributed

work units to other nodes and collecting the results. This method can be especially beneficial

when there are a changing number of work units or they each vary extremely in their runtime.

The Master/Worker scheme allows for finer control over load balancing if the computation is

not uniform. Static Partitioning, on the other hand, is useful when there are defined chucks of

work of equal size to be distributed to a set number of nodes. In the case of the code in this

paper, the work units each take approximately the same amount of time. This means that the

problem where some nodes may hang and force the others to wait will be avoided. As the

Master/Worker setup requires that the Master distribute the work via message passing, Static

Partitioning can be used to reduce messaging overhead.

12

I maintained a ‘bookkeeper’ node that collected the results from each node, conducted minimal

post processing, and handled the small amount of I/O to print the results. To handle the work

breakup, I opted for distributed algorithm leveraging static partitioning. Similar to the GPU

case, units of work were completed by each processor (in the GPU case it was each thread). The

application would dynamically determine the work unit size depending on the partition size

allocated and have each processor assigned to compute a small chunk of trials. In this case, the

work unit size is determined by dividing the total work (i.e. the length of the game) by the

partition size. Loops that initially iterated over the entire length of the game would now be

split up to go from set markers in the round sequence. These markers could be calculated on

each node itself based on its MPI rank and therefore be set without any message passing

required. The code sample below demonstrates how each processor would contribute to its

section of the overall array:

 int chunk = max_rounds/NP;

 for (int round = 0; round < chunk; round += 1)

 {

 payoff[0]=0;

 payoff[1]=0;

 play_round(player1, player2, max_moves, payoff);

 payoff1[rank*chunk+round] = payoff[0];

 payoff2[rank*chunk+round] = payoff[1];

 }

To coalesce all of the data back on all of the nodes, MPI_Reduce was used. This command

combines values from all nodes and distributes it back to all nodes in the communicator. A nice

aspect of the command is that it allows you to specify the method of combination. In this case, I

set every value in the vector to zero except for the values that the specific node was calculating.

I then had the MPI_Reduce combine the data by summing the vectors. [8] This meant that each

node would contribute a zero in each place except for the slots that were computed on this

node. Therefore the data could be propagated easily in one step.

Foreach species:

 Foreach species:

 gamePlay(var1…);

MPI_Reduce(var1…);

If (rank==0) Calculate_averages();

13

If (rank==0) Print_game_results;

This node was then able to complete the post processing step of computing the averages and

write the results of that game to the file. In the simulations I ran, each game consisted of 4096

rounds each with a maximum of 500 moves. There were fifteen games played: one for each

species combination.

V. RESULTS

Biological

The first level to look at for results would be whether or not they were consistent with the

results from Maynard Smith and Price, and whether they answered the intended question: can

we identify an evolutionarily stable strategy for conflict? The results from my simulations, be it

on the CPU, GPU, or Blue Gene, were consistent within +/- 2% of the results Maynard Smith and

Price published. This indicated a successful simulation and supported the findings that ‘limited

war’ strategies in which potential reciprocity played a role were ESS. The results from my serial

test are below:

To identify which strategies are ESS against the other four, look at the column of that strategy. A

strategy is considered ESS if in a population primarily consisting of players employing that

strategy, there is no reason to deviate to another. In the case of ‘Mouse’, you can tell that it is not

ESS as every other strategy does at least as well if not better than it does against itself. This

would imply that when in conflict with a player of the ‘Mouse’ strategy, the individual has

incentive to deviate to any strategy other than ‘Mouse’ for itself. By looking at the other

columns, you see that ‘Retaliator’ is an ESS and ‘Prober-Retaliator’ is almost an ESS. This

14

simulation strongly demonstrates that individual selection will select for ‘limited war’ strategies

over ‘total war’ strategies. It demonstrates that cooperation can evolve and is furthered by the

idea of potential reciprocity. This work supports the later research supporting strategies like

Tit-for-Tat in IPD tournaments. [9] Choosing strategies that promote cooperation are stable for

the individual. The potential work that can build from this will be discussed in a later section.

Parallelization

The evaluation of the parallel version of the code was carried out with 4096 rounds per game,

500 maximal moves per round, and 15 games were run (one for each strategy combination).
This was carried out on the CPU, GPU, and Blue Gene architectures. It is worth nothing that
while the same problem size was used in each case in this paper, this is not indicative of optimal

hardware usage. As the game size and number of strategies increase, the problem size will
grow to more thoroughly justify use of either a system like Blue Gene or an MPI/CUDA hybrid
to leverage multiple GPUs.

GPU

The hardware used for this data was the GeForce 9400M of the Macbook Pro. There are 16
cores, 8192 registers per block, 512 maximal threads per block, and a maximal grid size of 65535

x 65535 x 1. The corresponding CPU was used to obtain the CPU result as well. Running on
the GPU and leveraging 512 threads, I was able to reach a 97% time reduction when compared
to the overall time the simulation took on the CPU. The fact that this code is truly

embarrassingly parallel with little communication or IO overhead introduced, parallelizing the
code was able to significantly reduce the overall runtime. The resulting times are shown in the
following graph:

Figure X. This shows the overall runtime when the simulation is run on the CPU

15

or the GPU with thread counts of 16, 32, 64, 128, 256, and 512.

The next important point to look it is the efficiency of the speedup. This will allow you to
determine the optimal size for a grid needed by this problem size while demonstrating the
efficient use of the hardware. The speedup achieved on the GPU hardware is shown in the

graph below:

Figure X. This shows the overall speedup achieved by the cooperation simulation code

compared to the ideal linear speedup.

The Cooperation Simulation is exhibiting 92% efficiency at 64 threads and 35% efficiency at 512
threads. This is evidence of strongly successful parallelization that will only improve for larger

problem sizes. One of the main reasons we start to see a trail off in efficiency here is the the
computation time for each thread is greatly reduced as the larger thread counts are approached.
The time for the computation starts to be more on the timescale of the memory management.

As we move to larger problem sizes, larger grid sizes will be justified and needed as the overall
runtime for the program will grow exponentially with the problem size. This will provide a
strong opportunity to see higher efficiency as we scale up the system size to match the problem.

Blue Gene/L

The hardware used for the Blue Gene tests is a Blue Gene/L with 512 Mb of memory per node.
For this paper, my goal was to demonstrate the parallelism of the code and build a foundation
for future evolutionary game dynamics research. To this end, it was most important to simulate

the games involving the set 5 behavioral strategies discussed previously. In the results section, I

16

will discuss the path to scaling to large systems but for the initial work I used partition sizes of 1
node to 32 nodes.

Table 1. Runtime for Cooperation Simulation on Blue Gene with various partition sizes.

It is important to note the 99% overall time reduction. Also, note that the time stabilizes at
about the 16 node partition size. This is because the data has hit a threshold for parallelization
where the time it takes to compute each chunk is comparable to the other overhead such as the

time for MPI communication. At this point, there is no need to distribute the work any further.
It does, however, lend itself well to scaling the problem up at this point.

The corresponding speedup graph is shown below demonstrates results that raise question and
lead to future directions.

Figure X. Speedup seen for the Cooperation Simulation as compared to the ideal linear speedup.

The speedup exhibited is superlinear to an unexpected degree. The work units being computed
by each node are so small that there is a good chance what we are seeing here is the result of
cache effects. It is possible that everything is fitting in L1/L2 cache rather than main memory.

The code base being used is the same serial code as leveraged by the CUDA example. I have

17

implemented a verbose flag for debugging that has each node print out the work it is
completely. This ability to access the processes running on the nodes for debug purposes was a

big advantage and proved that the program was running properly and completing all work in
the simulation. This leaves the question of the results for future work. Testing of different
problem sizes to stress test the cache theory would be the next step.

VI. FUTURE WORK

wrote this application to provide a test platform for future work in evolutionary game

dynamics. To this end there are two potential paths that need to be explored for future

studies: the application of the program and the optimization of the parallelization.

Future Applications

The simulation of the game dynamics shown in this application provides a strong base to

investigate further properties of biological systems and their behaviors. The model that is

encapsulated here can be expanded to not only take into account more behavioral strategies, but

to test the affect of the different variables. By varying the thresholds for factors like the

likelihood of serious injury, we can start to represent varying levels of fitness of the individuals

as well as levels of weapon intensity. Moreover, other expansions to the current behaviors can

add to help gain insight to the various proposed methods for the evolution of cooperation. For

example, there is debate about the role punishment plays in individual selection. By adding

another option to the actions the behaviors are choosing, we can model the impact punishment

could have. Instead of having the options simply be cooperate, defect, or retreat, we could add

a fourth option to punish. In limited models this has been shown to promote cooperation at the

cost of payoffs. This phenomenon could be further studied here.

There are many instances where cooperation has evolved in biology where natural selection

seems like it should select against it. The application will allow this behavior to be modeled on

a large scale and hopefully help lead to solutions to these questions.

Parallel Optimizations

I

18

There are options that can be investigated for both parallel versions of the code to further

optimize them. For the CUDA implementation, further optimization regarding data

management could be completed. Currently, the entire payoff array for both players in a game

is copied back from the device memory to the host for post processing. Work should be done to

determine the trade-offs between interlacing the CPU post processing and the next set of work

for the GPU or having the device code sync the data in global memory and have the device do

the post processing, returning only this result to the host. Along these lines, tests to further

refine the data layout would be beneficial. More work could be done to compare various

methods of distributing the games over different grid sizes. This will also likely change

depending which hardware is being used and the memory sizes. Also, as mentioned many

times, the goal with this work is to scale up the problem. In the future, this will likely lead to a

hybrid MPI/GPU code to enable use of a cluster of GPUs.

As for the C/MPI code, there are a few key places that are ripe for optimization. Aside from the

necessary work to test the caching and extreme superlinearity exhibited in the results, work on

single node optimization would help improve hardware efficiency. As this paper was focused

on parallel methods, little time was spent finely tuning the main computations. Tests on

hardware usage and optimizations here could improve overall runtime. It would also be

advantageous to move to the Blue Gene/P architecture which allows for multiple threads on a

processor. This could enable further parallelization of the subroutines.

REFERENCES

1. Gadagkar, Raghavendra. "The Logic of Animal Conflict." Resonance 11 2005 5. Web.9 May 2009.
<http://ces.iisc.ernet.in/hpg/ragh/publication_list/Gadagkar_Publications/Gadagkar_2005c.pdf>.

2. Smith JM, Price GR (1973) "The logic of animal conflict."Nature 246:15–18.

3. Nowak MA, K Sigmund (1993). Chaos and the evolution of cooperation. P Natl Acad Sci USA 90: 5091-5094.

4. "Evloutionary Stable Strategy." Wikipedia: The Free Encyclopedia. 03 2009. Wikipedia. 7 May 2009 <
http://en.wikipedia.org/wiki/Evolutionarily_stable_strategy >.

5. NVIDIA CUDA Programming Guide.
http://developer.download.nvidia.com/compute/CUDA/1_0/NVIDIA_CUDA_Programming_Guide_1.0.pd
f

19

6. A. Gara, M. A. Blumrich, D. Chen, G. L.-T. Chiu, P. Coteus, M. E. Giampapa, R. A. Haring, P. Heidelberger,
D. Hoenicke, G. V. Kopcsay, T. A. Liebsch, M. Ohmacht, B. D. Steinmacher-Burow, T. Takken, and P.
Vranas, ‘‘Overview of the Blue Gene/L System Architecture,’’ IBM J. Res. & Dev. 49, No. 2/3, 195–212. 2005.

7. N. R. Adiga, M. A. Blumrich, D. Chen, P. Coteus, A. Gara, M. E. Giampapa, P. Heidelberger, S. Singh, B. D.
Steinmacher-Burow, T. Takken, M. Tsao, and P. Vranas, “Blue Gene/L Torus Interconnection Network,”
IBM J. Res. & Dev. 49, No. 2/3, 265–276 (2005, this issue).

8. X. Martorell, N. Smeds, R. Walkup, J. R. Brunheroto, G. Almási, J. A. Gunnels, L. DeRose, J. Labarta, F.
Escalé, J. Giménez, H. Servat, and J. E. Moreira, “Blue Gene/L Performance Tools,” IBM J. Res. & Dev. 49,
No. 2/3, 407–424. 2005.

9. Axelrod, R. & Hamilton, W. D. The evolution of cooperation. Science 211, 1390 (1981).

